import cv2 import numpy as np from typing import Dict, List, Tuple import colorsys from pytoshop import layers from pytoshop.enums import BlendMode from pytoshop.core import PsdFile from modules.constants import DEFAULT_COLOR, DEFAULT_PIXEL_SIZE def decode_to_mask(seg: np.ndarray[np.bool_] | np.ndarray[np.uint8]) -> np.ndarray[np.uint8]: """Decode to uint8 mask from bool to deal with as images""" if isinstance(seg, np.ndarray) and seg.dtype == np.bool_: return seg.astype(np.uint8) * 255 else: return seg.astype(np.uint8) def invert_masks(masks: List[Dict]) -> List[Dict]: """Invert the masks. Used for background masking""" inverted = 1 - masks return inverted def generate_random_color() -> Tuple[int, int, int]: """Generate random color in RGB format""" h = np.random.randint(0, 360) s = np.random.randint(70, 100) / 100 v = np.random.randint(70, 100) / 100 r, g, b = colorsys.hsv_to_rgb(h/360, s, v) return int(r * 255), int(g * 255), int(b * 255) def create_base_layer(image: np.ndarray) -> List[np.ndarray]: """Create a base layer from the image. Used to keep original image""" rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA) return [rgba_image] def create_mask_layers( image: np.ndarray, masks: List[Dict] ) -> List[np.ndarray]: """ Create list of images with mask data. Masks are sorted by area in descending order. Args: image: Original image masks: List of mask data Returns: List of RGBA images """ layer_list = [] sorted_masks = sorted(masks, key=lambda x: x['area'], reverse=True) for info in sorted_masks: rle = info['segmentation'] mask = decode_to_mask(rle) rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA) rgba_image[..., 3] = cv2.bitwise_and(rgba_image[..., 3], rgba_image[..., 3], mask=mask) layer_list.append(rgba_image) return layer_list def create_mask_gallery( image: np.ndarray, masks: List[Dict] ) -> List: """ Create list of images with mask data. Masks are sorted by area in descending order. Specially used for gradio Gallery component. each element has image and label, where label is the part number. Args: image: Original image masks: List of mask data Returns: List of [image, label] pairs """ mask_array_list = [] label_list = [] sorted_masks = sorted(masks, key=lambda x: x['area'], reverse=True) for index, info in enumerate(sorted_masks): rle = info['segmentation'] mask = decode_to_mask(rle) rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA) rgba_image[..., 3] = cv2.bitwise_and(rgba_image[..., 3], rgba_image[..., 3], mask=mask) mask_array_list.append(rgba_image) label_list.append(f'Part {index}') return [[img, label] for img, label in zip(mask_array_list, label_list)] def create_mask_combined_images( image: np.ndarray, masks: List[Dict] ) -> List: """ Create an image with colored masks. Each mask is colored with a random color and blended with the original image. Args: image: Original image masks: List of mask data Returns: [image, label] pairs """ final_result = np.zeros_like(image) used_colors = set() for info in masks: rle = info['segmentation'] mask = decode_to_mask(rle) while True: color = generate_random_color() if color not in used_colors: used_colors.add(color) break colored_mask = np.zeros_like(image) colored_mask[mask > 0] = color blended = cv2.addWeighted(image, 0.3, colored_mask, 0.7, 0) final_result = np.where(mask[:, :, np.newaxis] > 0, blended, final_result) combined_image = np.where(final_result != 0, final_result, image) hsv = cv2.cvtColor(combined_image, cv2.COLOR_BGR2HSV) hsv[:, :, 1] = np.clip(hsv[:, :, 1] * 1.5, 0, 255) enhanced = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) return [enhanced, "Masked"] def create_mask_pixelized_image( image: np.ndarray, masks: List[Dict], pixel_size: int = DEFAULT_PIXEL_SIZE ) -> np.ndarray: """ Create a pixelized image with mask. Args: image: Original image masks: List of mask data pixel_size: Pixel size for pixelization Returns: Pixelized image """ final_result = image.copy() def pixelize(img: np.ndarray, mask: np.ndarray[np.uint8], pixel_size: int): h, w = img.shape[:2] temp = cv2.resize(img, (w // pixel_size, h // pixel_size), interpolation=cv2.INTER_LINEAR) pixelated = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST) return np.where(mask[:, :, np.newaxis] > 0, pixelated, img) for info in masks: rle = info['segmentation'] mask = decode_to_mask(rle) pixelated_segment = pixelize(final_result, mask, pixel_size) final_result = np.where(mask[:, :, np.newaxis] > 0, pixelated_segment, final_result) return final_result def create_solid_color_mask_image( image: np.ndarray, masks: List[Dict], color_hex: str = DEFAULT_COLOR ) -> np.ndarray: """ Create an image with solid color masks. Args: image: Original image masks: List of mask data color_hex: Hex color code Returns: Image with solid color masks """ final_result = image.copy() def hex_to_bgr(hex_color: str): hex_color = hex_color.lstrip('#') rgb = tuple(int(hex_color[i:i + 2], 16) for i in (0, 2, 4)) return rgb[::-1] color_bgr = hex_to_bgr(color_hex) for info in masks: rle = info['segmentation'] mask = decode_to_mask(rle) solid_color_mask = np.full(image.shape, color_bgr, dtype=np.uint8) final_result = np.where(mask[:, :, np.newaxis] > 0, solid_color_mask, final_result) return final_result def insert_psd_layer( psd: PsdFile, image_data: np.ndarray, layer_name: str, blending_mode: BlendMode ) -> PsdFile: """ Insert a layer into the PSD file using pytoshop Args: psd: PSD file object from the pytoshop image_data: Image data layer_name: Layer name blending_mode: Blending mode from pytoshop Returns: Updated PSD file object """ channel_data = [layers.ChannelImageData(image=image_data[:, :, i], compression=1) for i in range(4)] layer_record = layers.LayerRecord( channels={-1: channel_data[3], 0: channel_data[0], 1: channel_data[1], 2: channel_data[2]}, top=0, bottom=image_data.shape[0], left=0, right=image_data.shape[1], blend_mode=blending_mode, name=layer_name, opacity=255, ) psd.layer_and_mask_info.layer_info.layer_records.append(layer_record) return psd def save_psd( input_image_data: np.ndarray, layer_data: List, layer_names: List, blending_modes: List, output_path: str ): """ Save the image with multiple layers as a PSD file Args: input_image_data: Original image data layer_data: List of images to be saved as layers layer_names: List of layer names blending_modes: List of blending modes output_path: Output path for the PSD file """ psd_file = PsdFile(num_channels=3, height=input_image_data.shape[0], width=input_image_data.shape[1]) psd_file.layer_and_mask_info.layer_info.layer_records.clear() for index, layer in enumerate(layer_data): psd_file = insert_psd_layer(psd_file, layer, layer_names[index], blending_modes[index]) with open(output_path, 'wb') as output_file: psd_file.write(output_file) def save_psd_with_masks( image: np.ndarray, masks: List[Dict], output_path: str ): """ Save the psd file with masks data. Args: image: Original image masks: List of mask data output_path: Output path for the PSD file """ original_layer = create_base_layer(image) mask_layers = create_mask_layers(image, masks) names = [f'Part {i}' for i in range(len(mask_layers))] modes = [BlendMode.normal] * (len(mask_layers)+1) save_psd(image, original_layer+mask_layers, ['Original_Image']+names, modes, output_path)