File size: 8,010 Bytes
13eb4ae
 
 
cb7f5d0
4468500
 
13eb4ae
cb7f5d0
c6b98ce
13eb4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb7f5d0
13eb4ae
 
cb7f5d0
 
 
 
 
 
4468500
 
 
 
 
cb7f5d0
 
 
 
4468500
 
cb7f5d0
 
 
 
 
4468500
 
 
 
 
cb7f5d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4468500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb7f5d0
4468500
 
 
 
 
 
cb7f5d0
4468500
 
 
 
 
cb7f5d0
 
 
 
4468500
 
cb7f5d0
13eb4ae
cb7f5d0
13eb4ae
 
c6b98ce
 
 
 
 
 
 
 
13eb4ae
 
cb7f5d0
c6b98ce
13eb4ae
 
cb7f5d0
 
13eb4ae
 
cb7f5d0
 
c6b98ce
cb7f5d0
 
 
 
13eb4ae
cb7f5d0
 
 
 
 
 
 
 
 
 
 
 
 
13eb4ae
cb7f5d0
 
c6b98ce
 
 
 
 
cb7f5d0
 
 
c6b98ce
cb7f5d0
 
 
 
 
 
 
 
 
 
13eb4ae
cb7f5d0
c6b98ce
13eb4ae
 
 
 
 
 
cb7f5d0
 
4468500
cb7f5d0
4468500
cb7f5d0
4468500
 
 
 
13eb4ae
 
 
 
 
 
4468500
cb7f5d0
13eb4ae
 
 
 
 
c6b98ce
13eb4ae
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import gradio as gr
import spaces
import time
import matplotlib.pyplot as plt
import numpy as np
from tts_model import TTSModel
from lib import format_audio_output
from lib.ui_content import header_html, demo_text_info

# Set HF_HOME for faster restarts with cached models/voices
os.environ["HF_HOME"] = "/data/.huggingface"

# Create TTS model instance
model = TTSModel()

@spaces.GPU(duration=10)  # Quick initialization
def initialize_model():
    """Initialize model and get voices"""
    if model.model is None:
        if not model.initialize():
            raise gr.Error("Failed to initialize model")
    return model.list_voices()

# Get initial voice list
voice_list = initialize_model()

@spaces.GPU(duration=120)  # Allow 5 minutes for processing
def generate_speech_from_ui(text, voice_name, speed, progress=gr.Progress(track_tqdm=False)):
    """Handle text-to-speech generation from the Gradio UI"""
    try:
        start_time = time.time()
        gpu_timeout = 120  # seconds
        
        # Create progress state
        progress_state = {
            "progress": 0.0,
            "tokens_per_sec": [],
            "rtf": [],
            "chunk_times": [],
            "gpu_time_left": gpu_timeout,
            "total_chunks": 0
        }
        
        def update_progress(chunk_num, total_chunks, tokens_per_sec, rtf):
            progress_state["progress"] = chunk_num / total_chunks
            progress_state["tokens_per_sec"].append(tokens_per_sec)
            progress_state["rtf"].append(rtf)
            
            # Update GPU time remaining
            elapsed = time.time() - start_time
            gpu_time_left = max(0, gpu_timeout - elapsed)
            progress_state["gpu_time_left"] = gpu_time_left
            progress_state["total_chunks"] = total_chunks
            
            # Track individual chunk processing time
            chunk_time = elapsed - (sum(progress_state["chunk_times"]) if progress_state["chunk_times"] else 0)
            progress_state["chunk_times"].append(chunk_time)
            
            # Only update progress display during processing
            progress(progress_state["progress"], desc=f"Processing chunk {chunk_num}/{total_chunks} | GPU Time Left: {int(gpu_time_left)}s")
        
        # Generate speech with progress tracking
        audio_array, duration = model.generate_speech(
            text, 
            voice_name, 
            speed,
            progress_callback=update_progress
        )
        
        # Format output for Gradio
        audio_output, duration_text = format_audio_output(audio_array)
        
        # Calculate final metrics
        total_time = time.time() - start_time
        total_duration = len(audio_array) / 24000  # audio duration in seconds
        rtf = total_time / total_duration if total_duration > 0 else 0
        mean_tokens_per_sec = np.mean(progress_state["tokens_per_sec"])
        
        # Create plot of tokens per second with median line
        fig, ax = plt.subplots(figsize=(10, 5))
        fig.patch.set_facecolor('black')
        ax.set_facecolor('black')
        chunk_nums = list(range(1, len(progress_state["tokens_per_sec"]) + 1))
        
        # Plot bars for tokens per second
        ax.bar(chunk_nums, progress_state["tokens_per_sec"], color='#ff2a6d', alpha=0.8)
        
        # Add median line
        median_tps = np.median(progress_state["tokens_per_sec"])
        ax.axhline(y=median_tps, color='#05d9e8', linestyle='--', label=f'Median: {median_tps:.1f} tokens/sec')
        
        # Style improvements
        ax.set_xlabel('Chunk Number', fontsize=24, labelpad=20)
        ax.set_ylabel('Tokens per Second', fontsize=24, labelpad=20)
        ax.set_title('Processing Speed by Chunk', fontsize=28, pad=30)
        
        # Increase tick label size
        ax.tick_params(axis='both', which='major', labelsize=20)
        
        # Remove gridlines
        ax.grid(False)
        
        # Style legend and position it in bottom left
        ax.legend(fontsize=20, facecolor='black', edgecolor='#05d9e8', loc='lower left')
        
        plt.tight_layout()
        
        # Prepare final metrics display including audio duration and real-time speed
        metrics_text = (
            f"Median Processing Speed: {np.median(progress_state['tokens_per_sec']):.1f} tokens/sec\n" +
            f"Real-time Factor: {rtf:.3f}\n" +
            f"Real Time Generation Speed: {int(1/rtf)}x \n" +
            f"Processing Time: {int(total_time)}s\n" +
            f"Output Audio Duration: {total_duration:.2f}s"
        )
        
        return (
            audio_output,
            fig,
            metrics_text
        )
    except Exception as e:
        raise gr.Error(f"Generation failed: {str(e)}")

# Create Gradio interface
with gr.Blocks(title="Kokoro TTS Demo", css="""
    .equal-height {
        min-height: 400px;
        display: flex;
        flex-direction: column;
    }
""") as demo:
    gr.HTML(header_html)
    
    with gr.Row():
        # Column 1: Text Input
        with gr.Column(elem_classes="equal-height"):
            text_input = gr.TextArea(
                label="Text to speak",
                placeholder="Enter text here or upload a .txt file",
                lines=10,
                value=open("the_time_machine_hgwells.txt").read()[:1000]
            )
        
        # Column 2: Controls
        with gr.Column(elem_classes="equal-height"):
            file_input = gr.File(
                label="Upload .txt file",
                file_types=[".txt"],
                type="binary"
            )
            
            def load_text_from_file(file_bytes):
                if file_bytes is None:
                    return None
                try:
                    return file_bytes.decode('utf-8')
                except Exception as e:
                    raise gr.Error(f"Failed to read file: {str(e)}")

            file_input.change(
                fn=load_text_from_file,
                inputs=[file_input],
                outputs=[text_input]
            )
            
            with gr.Group():
                default_voice = 'af_sky' if 'af_sky' in voice_list \
                    else voice_list[0] \
                        if voice_list else \
                            None
                        
                voice_dropdown = gr.Dropdown(
                    label="Voice",
                    choices=voice_list,
                    value=default_voice,
                    allow_custom_value=True
                )
                speed_slider = gr.Slider(
                    label="Speed",
                    minimum=0.5,
                    maximum=2.0,
                    value=1.0,
                    step=0.1
                )
                submit_btn = gr.Button("Generate Speech", variant="primary")
        
        # Column 3: Output
        with gr.Column(elem_classes="equal-height"):
            audio_output = gr.Audio(
                label="Generated Speech",
                type="numpy",
                format="wav",
                autoplay=False
            )
            progress_bar = gr.Progress(track_tqdm=False)
            metrics_text = gr.Textbox(
                label="Performance Summary",
                interactive=False,
                lines=4
            )
            metrics_plot = gr.Plot(
                label="Processing Metrics",
                show_label=True,
                format="png"  # Explicitly set format to PNG which is supported by matplotlib
            )
    
    # Set up event handler
    submit_btn.click(
        fn=generate_speech_from_ui,
        inputs=[text_input, voice_dropdown, speed_slider],
        outputs=[audio_output, metrics_plot, metrics_text],
        show_progress=True
    )
    
    # Add text analysis info
    with gr.Row():
        with gr.Column():
            gr.Markdown(demo_text_info)

# Launch the app
if __name__ == "__main__":
    demo.launch()