Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,010 Bytes
13eb4ae cb7f5d0 4468500 13eb4ae cb7f5d0 c6b98ce 13eb4ae cb7f5d0 13eb4ae cb7f5d0 4468500 cb7f5d0 4468500 cb7f5d0 4468500 cb7f5d0 4468500 cb7f5d0 4468500 cb7f5d0 4468500 cb7f5d0 4468500 cb7f5d0 13eb4ae cb7f5d0 13eb4ae c6b98ce 13eb4ae cb7f5d0 c6b98ce 13eb4ae cb7f5d0 13eb4ae cb7f5d0 c6b98ce cb7f5d0 13eb4ae cb7f5d0 13eb4ae cb7f5d0 c6b98ce cb7f5d0 c6b98ce cb7f5d0 13eb4ae cb7f5d0 c6b98ce 13eb4ae cb7f5d0 4468500 cb7f5d0 4468500 cb7f5d0 4468500 13eb4ae 4468500 cb7f5d0 13eb4ae c6b98ce 13eb4ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import os
import gradio as gr
import spaces
import time
import matplotlib.pyplot as plt
import numpy as np
from tts_model import TTSModel
from lib import format_audio_output
from lib.ui_content import header_html, demo_text_info
# Set HF_HOME for faster restarts with cached models/voices
os.environ["HF_HOME"] = "/data/.huggingface"
# Create TTS model instance
model = TTSModel()
@spaces.GPU(duration=10) # Quick initialization
def initialize_model():
"""Initialize model and get voices"""
if model.model is None:
if not model.initialize():
raise gr.Error("Failed to initialize model")
return model.list_voices()
# Get initial voice list
voice_list = initialize_model()
@spaces.GPU(duration=120) # Allow 5 minutes for processing
def generate_speech_from_ui(text, voice_name, speed, progress=gr.Progress(track_tqdm=False)):
"""Handle text-to-speech generation from the Gradio UI"""
try:
start_time = time.time()
gpu_timeout = 120 # seconds
# Create progress state
progress_state = {
"progress": 0.0,
"tokens_per_sec": [],
"rtf": [],
"chunk_times": [],
"gpu_time_left": gpu_timeout,
"total_chunks": 0
}
def update_progress(chunk_num, total_chunks, tokens_per_sec, rtf):
progress_state["progress"] = chunk_num / total_chunks
progress_state["tokens_per_sec"].append(tokens_per_sec)
progress_state["rtf"].append(rtf)
# Update GPU time remaining
elapsed = time.time() - start_time
gpu_time_left = max(0, gpu_timeout - elapsed)
progress_state["gpu_time_left"] = gpu_time_left
progress_state["total_chunks"] = total_chunks
# Track individual chunk processing time
chunk_time = elapsed - (sum(progress_state["chunk_times"]) if progress_state["chunk_times"] else 0)
progress_state["chunk_times"].append(chunk_time)
# Only update progress display during processing
progress(progress_state["progress"], desc=f"Processing chunk {chunk_num}/{total_chunks} | GPU Time Left: {int(gpu_time_left)}s")
# Generate speech with progress tracking
audio_array, duration = model.generate_speech(
text,
voice_name,
speed,
progress_callback=update_progress
)
# Format output for Gradio
audio_output, duration_text = format_audio_output(audio_array)
# Calculate final metrics
total_time = time.time() - start_time
total_duration = len(audio_array) / 24000 # audio duration in seconds
rtf = total_time / total_duration if total_duration > 0 else 0
mean_tokens_per_sec = np.mean(progress_state["tokens_per_sec"])
# Create plot of tokens per second with median line
fig, ax = plt.subplots(figsize=(10, 5))
fig.patch.set_facecolor('black')
ax.set_facecolor('black')
chunk_nums = list(range(1, len(progress_state["tokens_per_sec"]) + 1))
# Plot bars for tokens per second
ax.bar(chunk_nums, progress_state["tokens_per_sec"], color='#ff2a6d', alpha=0.8)
# Add median line
median_tps = np.median(progress_state["tokens_per_sec"])
ax.axhline(y=median_tps, color='#05d9e8', linestyle='--', label=f'Median: {median_tps:.1f} tokens/sec')
# Style improvements
ax.set_xlabel('Chunk Number', fontsize=24, labelpad=20)
ax.set_ylabel('Tokens per Second', fontsize=24, labelpad=20)
ax.set_title('Processing Speed by Chunk', fontsize=28, pad=30)
# Increase tick label size
ax.tick_params(axis='both', which='major', labelsize=20)
# Remove gridlines
ax.grid(False)
# Style legend and position it in bottom left
ax.legend(fontsize=20, facecolor='black', edgecolor='#05d9e8', loc='lower left')
plt.tight_layout()
# Prepare final metrics display including audio duration and real-time speed
metrics_text = (
f"Median Processing Speed: {np.median(progress_state['tokens_per_sec']):.1f} tokens/sec\n" +
f"Real-time Factor: {rtf:.3f}\n" +
f"Real Time Generation Speed: {int(1/rtf)}x \n" +
f"Processing Time: {int(total_time)}s\n" +
f"Output Audio Duration: {total_duration:.2f}s"
)
return (
audio_output,
fig,
metrics_text
)
except Exception as e:
raise gr.Error(f"Generation failed: {str(e)}")
# Create Gradio interface
with gr.Blocks(title="Kokoro TTS Demo", css="""
.equal-height {
min-height: 400px;
display: flex;
flex-direction: column;
}
""") as demo:
gr.HTML(header_html)
with gr.Row():
# Column 1: Text Input
with gr.Column(elem_classes="equal-height"):
text_input = gr.TextArea(
label="Text to speak",
placeholder="Enter text here or upload a .txt file",
lines=10,
value=open("the_time_machine_hgwells.txt").read()[:1000]
)
# Column 2: Controls
with gr.Column(elem_classes="equal-height"):
file_input = gr.File(
label="Upload .txt file",
file_types=[".txt"],
type="binary"
)
def load_text_from_file(file_bytes):
if file_bytes is None:
return None
try:
return file_bytes.decode('utf-8')
except Exception as e:
raise gr.Error(f"Failed to read file: {str(e)}")
file_input.change(
fn=load_text_from_file,
inputs=[file_input],
outputs=[text_input]
)
with gr.Group():
default_voice = 'af_sky' if 'af_sky' in voice_list \
else voice_list[0] \
if voice_list else \
None
voice_dropdown = gr.Dropdown(
label="Voice",
choices=voice_list,
value=default_voice,
allow_custom_value=True
)
speed_slider = gr.Slider(
label="Speed",
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1
)
submit_btn = gr.Button("Generate Speech", variant="primary")
# Column 3: Output
with gr.Column(elem_classes="equal-height"):
audio_output = gr.Audio(
label="Generated Speech",
type="numpy",
format="wav",
autoplay=False
)
progress_bar = gr.Progress(track_tqdm=False)
metrics_text = gr.Textbox(
label="Performance Summary",
interactive=False,
lines=4
)
metrics_plot = gr.Plot(
label="Processing Metrics",
show_label=True,
format="png" # Explicitly set format to PNG which is supported by matplotlib
)
# Set up event handler
submit_btn.click(
fn=generate_speech_from_ui,
inputs=[text_input, voice_dropdown, speed_slider],
outputs=[audio_output, metrics_plot, metrics_text],
show_progress=True
)
# Add text analysis info
with gr.Row():
with gr.Column():
gr.Markdown(demo_text_info)
# Launch the app
if __name__ == "__main__":
demo.launch()
|