Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,914 Bytes
4259439 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
# import os
# import gradio as gr
# import time
# import math
# import logging
# import matplotlib.pyplot as plt
# import numpy as np
# # from lib.mock_tts import MockTTSModel
# from lib import format_audio_output
# from lib.ui_content import header_html, demo_text_info
# from lib.book_utils import get_available_books, get_book_info, get_chapter_text
# from lib.text_utils import count_tokens
# from tts_model import TTSModel
# # Set HF_HOME for faster restarts with cached models/voices
# os.environ["HF_HOME"] = "/data/.huggingface"
# # Create TTS model instance
# model = TTSModel()
# # Configure logging
# logging.basicConfig(level=logging.DEBUG)
# # Suppress matplotlib debug messages
# logging.getLogger('matplotlib').setLevel(logging.WARNING)
# logger = logging.getLogger(__name__)
# logger.debug("Starting app initialization...")
# model = TTSModel()
# def initialize_model():
# """Initialize model and get voices"""
# if model.model is None:
# if not model.initialize():
# raise gr.Error("Failed to initialize model")
# voices = model.list_voices()
# if not voices:
# raise gr.Error("No voices found. Please check the voices directory.")
# default_voice = 'af_sky' if 'af_sky' in voices else voices[0] if voices else None
# return gr.update(choices=voices, value=default_voice)
# def update_progress(chunk_num, total_chunks, tokens_per_sec, rtf, progress_state, start_time, gpu_timeout, progress):
# # Calculate time metrics
# elapsed = time.time() - start_time
# gpu_time_left = max(0, gpu_timeout - elapsed)
# # Calculate chunk time more accurately
# prev_total_time = sum(progress_state["chunk_times"]) if progress_state["chunk_times"] else 0
# chunk_time = elapsed - prev_total_time
# # Validate metrics before adding to state
# if chunk_time > 0 and tokens_per_sec >= 0:
# # Update progress state with validated metrics
# progress_state["progress"] = chunk_num / total_chunks
# progress_state["total_chunks"] = total_chunks
# progress_state["gpu_time_left"] = gpu_time_left
# progress_state["tokens_per_sec"].append(float(tokens_per_sec))
# progress_state["rtf"].append(float(rtf))
# progress_state["chunk_times"].append(chunk_time)
# # Only update progress display during processing
# progress(progress_state["progress"], desc=f"Processing chunk {chunk_num}/{total_chunks} | GPU Time Left: {int(gpu_time_left)}s")
# def generate_speech_from_ui(text, voice_names, speed, gpu_timeout, progress=gr.Progress(track_tqdm=False)):
# """Handle text-to-speech generation from the Gradio UI"""
# try:
# if not text or not voice_names:
# raise gr.Error("Please enter text and select at least one voice")
# start_time = time.time()
# # Create progress state with explicit type initialization
# progress_state = {
# "progress": 0.0,
# "tokens_per_sec": [], # Initialize as empty list
# "rtf": [], # Initialize as empty list
# "chunk_times": [], # Initialize as empty list
# "gpu_time_left": float(gpu_timeout), # Ensure float
# "total_chunks": 0
# }
# # Handle single or multiple voices
# if isinstance(voice_names, str):
# voice_names = [voice_names]
# # Generate speech with progress tracking using combined voice
# audio_array, duration, metrics = model.generate_speech(
# text,
# voice_names,
# speed,
# gpu_timeout=gpu_timeout,
# progress_callback=update_progress,
# progress_state=progress_state,
# progress=progress
# )
# # Format output for Gradio
# audio_output, duration_text = format_audio_output(audio_array)
# # Create plot and metrics text outside GPU context
# fig, metrics_text = create_performance_plot(metrics, voice_names)
# return (
# audio_output,
# fig,
# metrics_text
# )
# except Exception as e:
# raise gr.Error(f"Generation failed: {str(e)}")
# def create_performance_plot(metrics, voice_names):
# """Create performance plot and metrics text from generation metrics"""
# # Clean and process the data
# tokens_per_sec = np.array(metrics["tokens_per_sec"])
# rtf_values = np.array(metrics["rtf"])
# # Calculate statistics using cleaned data
# median_tps = float(np.median(tokens_per_sec))
# mean_tps = float(np.mean(tokens_per_sec))
# std_tps = float(np.std(tokens_per_sec))
# # Set y-axis limits based on data range
# y_min = max(0, np.min(tokens_per_sec) * 0.9)
# y_max = np.max(tokens_per_sec) * 1.1
# # Create plot
# fig, ax = plt.subplots(figsize=(10, 5))
# fig.patch.set_facecolor('black')
# ax.set_facecolor('black')
# # Plot data points
# chunk_nums = list(range(1, len(tokens_per_sec) + 1))
# # Plot data points
# ax.bar(chunk_nums, tokens_per_sec, color='#ff2a6d', alpha=0.6)
# # Set y-axis limits with padding
# padding = 0.1 * (y_max - y_min)
# ax.set_ylim(max(0, y_min - padding), y_max + padding)
# # Add median line
# ax.axhline(y=median_tps, color='#05d9e8', linestyle='--',
# label=f'Median: {median_tps:.1f} tokens/sec')
# # Style improvements
# ax.set_xlabel('Chunk Number', fontsize=24, labelpad=20, color='white')
# ax.set_ylabel('Tokens per Second', fontsize=24, labelpad=20, color='white')
# ax.set_title('Processing Speed by Chunk', fontsize=28, pad=30, color='white')
# ax.tick_params(axis='both', which='major', labelsize=20, colors='white')
# ax.spines['bottom'].set_color('white')
# ax.spines['top'].set_color('white')
# ax.spines['left'].set_color('white')
# ax.spines['right'].set_color('white')
# ax.grid(False)
# ax.legend(fontsize=20, facecolor='black', edgecolor='#05d9e8', loc='lower left',
# labelcolor='white')
# plt.tight_layout()
# # Calculate average RTF from individual chunk RTFs
# rtf = np.mean(rtf_values)
# # Prepare metrics text
# metrics_text = (
# f"Median Speed: {median_tps:.1f} tokens/sec (o200k_base)\n" +
# f"Real-time Factor: {rtf:.3f}\n" +
# f"Real Time Speed: {int(1/rtf)}x\n" +
# f"Processing Time: {int(metrics['total_time'])}s\n" +
# f"Total Tokens: {metrics['total_tokens']} (o200k_base)\n" +
# f"Voices: {', '.join(voice_names)}"
# )
# return fig, metrics_text
# # Create Gradio interface
# with gr.Blocks(title="Kokoro TTS Demo", css="""
# .equal-height {
# min-height: 400px;
# display: flex;
# flex-direction: column;
# }
# .token-label {
# font-size: 1rem;
# margin-bottom: 0.3rem;
# text-align: center;
# padding: 0.2rem 0;
# }
# .token-count {
# color: #4169e1;
# }
# """) as demo:
# gr.HTML(header_html)
# with gr.Row():
# # Column 1: Text Input and Book Selection
# with gr.Column(elem_classes="equal-height"):
# # Book selection
# books = get_available_books()
# book_dropdown = gr.Dropdown(
# label="Select Book",
# choices=[book['label'] for book in books],
# value=books[0]['label'] if books else None,
# type="value",
# allow_custom_value=True
# )
# # Initialize chapters for first book
# initial_book = books[0]['value'] if books else None
# initial_chapters = []
# if initial_book:
# book_path = os.path.join("texts/processed", initial_book)
# _, chapters = get_book_info(book_path)
# initial_chapters = [ch['title'] for ch in chapters]
# # Chapter selection with initial chapters
# chapter_dropdown = gr.Dropdown(
# label="Select Chapter",
# choices=initial_chapters,
# value=initial_chapters[0] if initial_chapters else None,
# type="value",
# allow_custom_value=True
# )
# lab_tps = 175
# lab_rts = 50
# # Text input area with initial chapter text
# initial_text = ""
# if initial_chapters and initial_book:
# book_path = os.path.join("texts/processed", initial_book)
# _, chapters = get_book_info(book_path)
# if chapters:
# initial_text = get_chapter_text(book_path, chapters[0]['id'])
# tokens = count_tokens(initial_text)
# time_estimate = math.ceil(tokens / lab_tps)
# output_estimate = (time_estimate * lab_rts)//60
# initial_label = f'<div class="token-label"><span class="token-count">Estimated {output_estimate} minutes in ~{time_estimate}s</span></div>'
# else:
# initial_label = '<div class="token-label"></div>'
# else:
# initial_label = '<div class="token-label"></div>'
# def update_text_label(text):
# if not text:
# return '<div class="token-label"></div>'
# tokens = count_tokens(text)
# time_estimate = math.ceil(tokens / lab_tps)
# output_estimate = (time_estimate * lab_rts)//60
# return f'<div class="token-label"><span class="token-count">Estimated {output_estimate} minutes in ~{time_estimate}s</span></div>'
# text_input = gr.TextArea(
# label=None,
# placeholder="Enter text here, select a chapter, or upload a .txt file",
# value=initial_text,
# lines=8,
# max_lines=14,
# show_label=False,
# show_copy_button=True # Add copy button for convenience
# )
# clear_btn = gr.Button("Clear Text", variant="secondary")
# label_html = gr.HTML(initial_label)
# def clear_text():
# return "", '<div class="token-label"></div>'
# clear_btn.click(
# fn=clear_text,
# outputs=[text_input, label_html]
# )
# # Update label whenever text changes
# text_input.change(
# fn=update_text_label,
# inputs=[text_input],
# outputs=[label_html],
# trigger_mode="always_last"
# )
# def update_chapters(book_name):
# if not book_name:
# return gr.update(choices=[], value=None), "", '<div class="token-label"></div>'
# # Find the corresponding book file
# book_file = next((book['value'] for book in books if book['label'] == book_name), None)
# if not book_file:
# return gr.update(choices=[], value=None), "", '<div class="token-label"></div>'
# book_path = os.path.join("texts/processed", book_file)
# book_title, chapters = get_book_info(book_path)
# # Create simple choices list of chapter titles
# chapter_choices = [ch['title'] for ch in chapters]
# # Set initial chapter text when book is selected
# initial_text = get_chapter_text(book_path, chapters[0]['id']) if chapters else ""
# if initial_text:
# tokens = count_tokens(initial_text)
# time_estimate = math.ceil(tokens / 150 / 10) * 10
# label = f'<div class="token-label"><span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
# else:
# label = '<div class="token-label"></div>'
# return gr.update(choices=chapter_choices, value=chapter_choices[0] if chapter_choices else None), initial_text, label
# def load_chapter_text(book_name, chapter_title):
# if not book_name or not chapter_title:
# return "", '<div class="token-label"></div>'
# # Find the corresponding book file
# book_file = next((book['value'] for book in books if book['label'] == book_name), None)
# if not book_file:
# return "", '<div class="token-label"></div>'
# book_path = os.path.join("texts/processed", book_file)
# # Get all chapters and find the one matching the title
# _, chapters = get_book_info(book_path)
# for ch in chapters:
# if ch['title'] == chapter_title:
# text = get_chapter_text(book_path, ch['id'])
# tokens = count_tokens(text)
# time_estimate = math.ceil(tokens / 150 / 10) * 10
# return text, f'<div class="token-label"> <span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
# return "", '<div class="token-label"></div>'
# # Set up event handlers for book/chapter selection
# book_dropdown.change(
# fn=update_chapters,
# inputs=[book_dropdown],
# outputs=[chapter_dropdown, text_input, label_html]
# )
# chapter_dropdown.change(
# fn=load_chapter_text,
# inputs=[book_dropdown, chapter_dropdown],
# outputs=[text_input, label_html]
# )
# # Column 2: Controls
# with gr.Column(elem_classes="equal-height"):
# file_input = gr.File(
# label="Upload .txt file",
# file_types=[".txt"],
# type="binary"
# )
# def load_text_from_file(file_bytes):
# if file_bytes is None:
# return None, '<div class="token-label"></div>'
# try:
# text = file_bytes.decode('utf-8')
# tokens = count_tokens(text)
# time_estimate = math.ceil(tokens / 150 / 10) * 10 # Round up to nearest 10 seconds
# return text, f'<div class="token-label"><span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
# except Exception as e:
# raise gr.Error(f"Failed to read file: {str(e)}")
# file_input.change(
# fn=load_text_from_file,
# inputs=[file_input],
# outputs=[text_input, label_html]
# )
# with gr.Group():
# voice_dropdown = gr.Dropdown(
# label="Voice(s)",
# choices=[], # Start empty, will be populated after initialization
# value=None,
# allow_custom_value=True,
# multiselect=True
# )
# # Add refresh button to manually update voice list
# refresh_btn = gr.Button("🔄 Refresh Voices", size="sm")
# speed_slider = gr.Slider(
# label="Speed",
# minimum=0.5,
# maximum=2.0,
# value=1.0,
# step=0.1
# )
# gpu_timeout_slider = gr.Slider(
# label="GPU Timeout (seconds)",
# minimum=15,
# maximum=120,
# value=90,
# step=1,
# info="Maximum time allowed for GPU processing"
# )
# submit_btn = gr.Button("Generate Speech", variant="primary")
# # Column 3: Output
# with gr.Column(elem_classes="equal-height"):
# audio_output = gr.Audio(
# label="Generated Speech",
# type="numpy",
# format="wav",
# autoplay=False
# )
# progress_bar = gr.Progress(track_tqdm=False)
# metrics_text = gr.Textbox(
# label="Performance Summary",
# interactive=False,
# lines=5
# )
# metrics_plot = gr.Plot(
# label="Processing Metrics",
# show_label=True,
# format="png" # Explicitly set format to PNG which is supported by matplotlib
# )
# # Set up event handlers
# refresh_btn.click(
# fn=initialize_model,
# outputs=[voice_dropdown]
# )
# submit_btn.click(
# fn=generate_speech_from_ui,
# inputs=[text_input, voice_dropdown, speed_slider, gpu_timeout_slider],
# outputs=[audio_output, metrics_plot, metrics_text],
# show_progress=True
# )
# # Add text analysis info
# with gr.Row():
# with gr.Column():
# gr.Markdown(demo_text_info)
# # Initialize voices on load
# demo.load(
# fn=initialize_model,
# outputs=[voice_dropdown]
# )
# # Launch the app
# if __name__ == "__main__":
# demo.launch()
|