File size: 17,914 Bytes
4259439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# import os
# import gradio as gr
# import time
# import math
# import logging
# import matplotlib.pyplot as plt
# import numpy as np
# # from lib.mock_tts import MockTTSModel
# from lib import format_audio_output
# from lib.ui_content import header_html, demo_text_info
# from lib.book_utils import get_available_books, get_book_info, get_chapter_text
# from lib.text_utils import count_tokens
# from tts_model import TTSModel

# # Set HF_HOME for faster restarts with cached models/voices
# os.environ["HF_HOME"] = "/data/.huggingface"

# # Create TTS model instance
# model = TTSModel()

# # Configure logging
# logging.basicConfig(level=logging.DEBUG)
# # Suppress matplotlib debug messages
# logging.getLogger('matplotlib').setLevel(logging.WARNING)
# logger = logging.getLogger(__name__)
# logger.debug("Starting app initialization...")


# model = TTSModel()

# def initialize_model():
#     """Initialize model and get voices"""
#     if model.model is None:
#         if not model.initialize():
#             raise gr.Error("Failed to initialize model")
    
#     voices = model.list_voices()
#     if not voices:
#         raise gr.Error("No voices found. Please check the voices directory.")
        
#     default_voice = 'af_sky' if 'af_sky' in voices else voices[0] if voices else None
    
#     return gr.update(choices=voices, value=default_voice)

# def update_progress(chunk_num, total_chunks, tokens_per_sec, rtf, progress_state, start_time, gpu_timeout, progress):
#     # Calculate time metrics
#     elapsed = time.time() - start_time
#     gpu_time_left = max(0, gpu_timeout - elapsed)
    
#     # Calculate chunk time more accurately
#     prev_total_time = sum(progress_state["chunk_times"]) if progress_state["chunk_times"] else 0
#     chunk_time = elapsed - prev_total_time
    
#     # Validate metrics before adding to state
#     if chunk_time > 0 and tokens_per_sec >= 0:
#         # Update progress state with validated metrics
#         progress_state["progress"] = chunk_num / total_chunks
#         progress_state["total_chunks"] = total_chunks
#         progress_state["gpu_time_left"] = gpu_time_left
#         progress_state["tokens_per_sec"].append(float(tokens_per_sec))
#         progress_state["rtf"].append(float(rtf))
#         progress_state["chunk_times"].append(chunk_time)
    
#     # Only update progress display during processing
#     progress(progress_state["progress"], desc=f"Processing chunk {chunk_num}/{total_chunks} | GPU Time Left: {int(gpu_time_left)}s")

# def generate_speech_from_ui(text, voice_names, speed, gpu_timeout, progress=gr.Progress(track_tqdm=False)):
#     """Handle text-to-speech generation from the Gradio UI"""
#     try:
#         if not text or not voice_names:
#             raise gr.Error("Please enter text and select at least one voice")
            
#         start_time = time.time()
        
#         # Create progress state with explicit type initialization
#         progress_state = {
#             "progress": 0.0,
#             "tokens_per_sec": [],  # Initialize as empty list
#             "rtf": [],  # Initialize as empty list
#             "chunk_times": [],  # Initialize as empty list
#             "gpu_time_left": float(gpu_timeout),  # Ensure float
#             "total_chunks": 0
#         }
        
#         # Handle single or multiple voices
#         if isinstance(voice_names, str):
#             voice_names = [voice_names]
        
#         # Generate speech with progress tracking using combined voice
#         audio_array, duration, metrics = model.generate_speech(
#             text,
#             voice_names,
#             speed,
#             gpu_timeout=gpu_timeout,
#             progress_callback=update_progress,
#             progress_state=progress_state,
#             progress=progress
#         )
    
#         # Format output for Gradio
#         audio_output, duration_text = format_audio_output(audio_array)
        
#         # Create plot and metrics text outside GPU context
#         fig, metrics_text = create_performance_plot(metrics, voice_names)
        
#         return (
#             audio_output,
#             fig,
#             metrics_text
#         )
#     except Exception as e:
#         raise gr.Error(f"Generation failed: {str(e)}")

# def create_performance_plot(metrics, voice_names):
#     """Create performance plot and metrics text from generation metrics"""
#     # Clean and process the data
#     tokens_per_sec = np.array(metrics["tokens_per_sec"])
#     rtf_values = np.array(metrics["rtf"])
    
#     # Calculate statistics using cleaned data
#     median_tps = float(np.median(tokens_per_sec))
#     mean_tps = float(np.mean(tokens_per_sec))
#     std_tps = float(np.std(tokens_per_sec))
    
#     # Set y-axis limits based on data range
#     y_min = max(0, np.min(tokens_per_sec) * 0.9)
#     y_max = np.max(tokens_per_sec) * 1.1
    
#     # Create plot
#     fig, ax = plt.subplots(figsize=(10, 5))
#     fig.patch.set_facecolor('black')
#     ax.set_facecolor('black')
    
#     # Plot data points
#     chunk_nums = list(range(1, len(tokens_per_sec) + 1))
    
#     # Plot data points
#     ax.bar(chunk_nums, tokens_per_sec, color='#ff2a6d', alpha=0.6)
    
#     # Set y-axis limits with padding
#     padding = 0.1 * (y_max - y_min)
#     ax.set_ylim(max(0, y_min - padding), y_max + padding)
    
#     # Add median line
#     ax.axhline(y=median_tps, color='#05d9e8', linestyle='--', 
#               label=f'Median: {median_tps:.1f} tokens/sec')
    
#     # Style improvements
#     ax.set_xlabel('Chunk Number', fontsize=24, labelpad=20, color='white')
#     ax.set_ylabel('Tokens per Second', fontsize=24, labelpad=20, color='white')
#     ax.set_title('Processing Speed by Chunk', fontsize=28, pad=30, color='white')
#     ax.tick_params(axis='both', which='major', labelsize=20, colors='white')
#     ax.spines['bottom'].set_color('white')
#     ax.spines['top'].set_color('white')
#     ax.spines['left'].set_color('white')
#     ax.spines['right'].set_color('white')
#     ax.grid(False)
#     ax.legend(fontsize=20, facecolor='black', edgecolor='#05d9e8', loc='lower left', 
#              labelcolor='white')
    
#     plt.tight_layout()
    
#     # Calculate average RTF from individual chunk RTFs
#     rtf = np.mean(rtf_values)
    
#     # Prepare metrics text
#     metrics_text = (
#         f"Median Speed: {median_tps:.1f} tokens/sec (o200k_base)\n" +
#         f"Real-time Factor: {rtf:.3f}\n" +
#         f"Real Time Speed: {int(1/rtf)}x\n" +
#         f"Processing Time: {int(metrics['total_time'])}s\n" +
#         f"Total Tokens: {metrics['total_tokens']} (o200k_base)\n" +
#         f"Voices: {', '.join(voice_names)}"
#     )
    
#     return fig, metrics_text


# # Create Gradio interface
# with gr.Blocks(title="Kokoro TTS Demo", css="""
#     .equal-height {
#         min-height: 400px;
#         display: flex;
#         flex-direction: column;
#     }
#     .token-label {
#         font-size: 1rem;
#         margin-bottom: 0.3rem;
#         text-align: center;
#         padding: 0.2rem 0;
#     }
#     .token-count {
#         color: #4169e1;
#     }
# """) as demo:
#     gr.HTML(header_html)
    
#     with gr.Row():
#         # Column 1: Text Input and Book Selection
#         with gr.Column(elem_classes="equal-height"):
#             # Book selection
#             books = get_available_books()
#             book_dropdown = gr.Dropdown(
#                 label="Select Book",
#                 choices=[book['label'] for book in books],
#                 value=books[0]['label'] if books else None,
#                 type="value",
#                 allow_custom_value=True
#             )
            
#             # Initialize chapters for first book
#             initial_book = books[0]['value'] if books else None
#             initial_chapters = []
#             if initial_book:
#                 book_path = os.path.join("texts/processed", initial_book)
#                 _, chapters = get_book_info(book_path)
#                 initial_chapters = [ch['title'] for ch in chapters]
            
#             # Chapter selection with initial chapters
#             chapter_dropdown = gr.Dropdown(
#                 label="Select Chapter",
#                 choices=initial_chapters,
#                 value=initial_chapters[0] if initial_chapters else None,
#                 type="value",
#                 allow_custom_value=True
#             )
#             lab_tps = 175
#             lab_rts = 50
#             # Text input area with initial chapter text
#             initial_text = ""
#             if initial_chapters and initial_book:
#                 book_path = os.path.join("texts/processed", initial_book)
#                 _, chapters = get_book_info(book_path)
#                 if chapters:
#                     initial_text = get_chapter_text(book_path, chapters[0]['id'])
#                     tokens = count_tokens(initial_text)
#                     time_estimate = math.ceil(tokens / lab_tps)
#                     output_estimate = (time_estimate * lab_rts)//60
#                     initial_label = f'<div class="token-label"><span class="token-count">Estimated {output_estimate} minutes in ~{time_estimate}s</span></div>'
#                 else:
#                     initial_label = '<div class="token-label"></div>'
#             else:
#                 initial_label = '<div class="token-label"></div>'
            
#             def update_text_label(text):
#                 if not text:
#                     return '<div class="token-label"></div>'
#                 tokens = count_tokens(text)
#                 time_estimate = math.ceil(tokens / lab_tps)
#                 output_estimate = (time_estimate * lab_rts)//60 
#                 return  f'<div class="token-label"><span class="token-count">Estimated {output_estimate} minutes in ~{time_estimate}s</span></div>'

            
#             text_input = gr.TextArea(
#                 label=None,
#                 placeholder="Enter text here, select a chapter, or upload a .txt file",
#                 value=initial_text,
#                 lines=8,
#                 max_lines=14,
#                 show_label=False,
#                 show_copy_button=True  # Add copy button for convenience
#             )
            
#             clear_btn = gr.Button("Clear Text", variant="secondary")
#             label_html = gr.HTML(initial_label)
            
#             def clear_text():
#                 return "", '<div class="token-label"></div>'
            
#             clear_btn.click(
#                 fn=clear_text,
#                 outputs=[text_input, label_html]
#             )
            
#             # Update label whenever text changes
#             text_input.change(
#                 fn=update_text_label,
#                 inputs=[text_input],
#                 outputs=[label_html],
#                 trigger_mode="always_last"
#             )
            
#             def update_chapters(book_name):
#                 if not book_name:
#                     return gr.update(choices=[], value=None), "", '<div class="token-label"></div>'
#                 # Find the corresponding book file
#                 book_file = next((book['value'] for book in books if book['label'] == book_name), None)
#                 if not book_file:
#                     return gr.update(choices=[], value=None), "", '<div class="token-label"></div>'
#                 book_path = os.path.join("texts/processed", book_file)
#                 book_title, chapters = get_book_info(book_path)
#                 # Create simple choices list of chapter titles
#                 chapter_choices = [ch['title'] for ch in chapters]
#                 # Set initial chapter text when book is selected
#                 initial_text = get_chapter_text(book_path, chapters[0]['id']) if chapters else ""
#                 if initial_text:
#                     tokens = count_tokens(initial_text)
#                     time_estimate = math.ceil(tokens / 150 / 10) * 10
#                     label = f'<div class="token-label"><span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
#                 else:
#                     label = '<div class="token-label"></div>'
#                 return gr.update(choices=chapter_choices, value=chapter_choices[0] if chapter_choices else None), initial_text, label
            
#             def load_chapter_text(book_name, chapter_title):
#                 if not book_name or not chapter_title:
#                     return "", '<div class="token-label"></div>'
#                 # Find the corresponding book file
#                 book_file = next((book['value'] for book in books if book['label'] == book_name), None)
#                 if not book_file:
#                     return "", '<div class="token-label"></div>'
#                 book_path = os.path.join("texts/processed", book_file)
#                 # Get all chapters and find the one matching the title
#                 _, chapters = get_book_info(book_path)
#                 for ch in chapters:
#                     if ch['title'] == chapter_title:
#                         text = get_chapter_text(book_path, ch['id'])
#                         tokens = count_tokens(text)
#                         time_estimate = math.ceil(tokens / 150 / 10) * 10
#                         return text, f'<div class="token-label"> <span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
#                 return "", '<div class="token-label"></div>'
            
#             # Set up event handlers for book/chapter selection
#             book_dropdown.change(
#                 fn=update_chapters,
#                 inputs=[book_dropdown],
#                 outputs=[chapter_dropdown, text_input, label_html]
#             )
            
#             chapter_dropdown.change(
#                 fn=load_chapter_text,
#                 inputs=[book_dropdown, chapter_dropdown],
#                 outputs=[text_input, label_html]
#             )
        
#         # Column 2: Controls
#         with gr.Column(elem_classes="equal-height"):
#             file_input = gr.File(
#                 label="Upload .txt file",
#                 file_types=[".txt"],
#                 type="binary"
#             )
            
#             def load_text_from_file(file_bytes):
#                 if file_bytes is None:
#                     return None, '<div class="token-label"></div>'
#                 try:
#                     text = file_bytes.decode('utf-8')
#                     tokens = count_tokens(text)
#                     time_estimate = math.ceil(tokens / 150 / 10) * 10  # Round up to nearest 10 seconds
#                     return text, f'<div class="token-label"><span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
#                 except Exception as e:
#                     raise gr.Error(f"Failed to read file: {str(e)}")

#             file_input.change(
#                 fn=load_text_from_file,
#                 inputs=[file_input],
#                 outputs=[text_input, label_html]
#             )
            
#             with gr.Group():
#                 voice_dropdown = gr.Dropdown(
#                     label="Voice(s)",
#                     choices=[],  # Start empty, will be populated after initialization
#                     value=None,
#                     allow_custom_value=True,
#                     multiselect=True
#                 )
                
#                 # Add refresh button to manually update voice list
#                 refresh_btn = gr.Button("🔄 Refresh Voices", size="sm")
                
#                 speed_slider = gr.Slider(
#                     label="Speed",
#                     minimum=0.5,
#                     maximum=2.0,
#                     value=1.0,
#                     step=0.1
#                 )
#                 gpu_timeout_slider = gr.Slider(
#                     label="GPU Timeout (seconds)",
#                     minimum=15,
#                     maximum=120,
#                     value=90,
#                     step=1,
#                     info="Maximum time allowed for GPU processing"
#                 )
#                 submit_btn = gr.Button("Generate Speech", variant="primary")
        
#         # Column 3: Output
#         with gr.Column(elem_classes="equal-height"):
#             audio_output = gr.Audio(
#                 label="Generated Speech",
#                 type="numpy",
#                 format="wav",
#                 autoplay=False
#             )
#             progress_bar = gr.Progress(track_tqdm=False)
#             metrics_text = gr.Textbox(
#                 label="Performance Summary",
#                 interactive=False,
#                 lines=5
#             )
#             metrics_plot = gr.Plot(
#                 label="Processing Metrics",
#                 show_label=True,
#                 format="png"  # Explicitly set format to PNG which is supported by matplotlib
#             )
    
#     # Set up event handlers
#     refresh_btn.click(
#         fn=initialize_model,
#         outputs=[voice_dropdown]
#     )
    
#     submit_btn.click(
#         fn=generate_speech_from_ui,
#         inputs=[text_input, voice_dropdown, speed_slider, gpu_timeout_slider],
#         outputs=[audio_output, metrics_plot, metrics_text],
#         show_progress=True
#     )
    
#     # Add text analysis info
#     with gr.Row():
#         with gr.Column():
#             gr.Markdown(demo_text_info)
    
#     # Initialize voices on load
#     demo.load(
#         fn=initialize_model,
#         outputs=[voice_dropdown]
#     )

# # Launch the app
# if __name__ == "__main__":
#     demo.launch()