Kokoro-TTS-Zero / tts_model.py
Remsky's picture
Add initial implementation of Kokoro TTS Demo Space with Gradio interface and dependencies
13eb4ae
raw
history blame
13.4 kB
import os
import io
import spaces
import torch
import numpy as np
import time
import tiktoken
import scipy.io.wavfile as wavfile
from huggingface_hub import hf_hub_download
import importlib.util
import sys
def load_module_from_file(module_name, file_path):
"""Load a Python module from file path"""
spec = importlib.util.spec_from_file_location(module_name, file_path)
if spec is None or spec.loader is None:
raise ImportError(f"Cannot load module {module_name} from {file_path}")
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
spec.loader.exec_module(module)
return module
# Download and load required Python modules
py_modules = ["istftnet", "plbert", "models"]
for py_module in py_modules:
path = hf_hub_download(repo_id="hexgrad/Kokoro-82M", filename=f"{py_module}.py")
load_module_from_file(py_module, path)
# Load the kokoro module
kokoro_path = hf_hub_download(repo_id="hexgrad/Kokoro-82M", filename="kokoro.py")
kokoro = load_module_from_file("kokoro", kokoro_path)
# Import required functions
generate = kokoro.generate
normalize_text = kokoro.normalize_text
models = sys.modules['models']
build_model = models.build_model
# Set HF_HOME for faster restarts
os.environ["HF_HOME"] = "/data/.huggingface"
class TTSModel:
"""Self-contained TTS model manager for Hugging Face Spaces"""
def __init__(self):
self.model = None
self.voices_dir = "voices"
self.model_repo = "hexgrad/Kokoro-82M"
os.makedirs(self.voices_dir, exist_ok=True)
def initialize(self):
"""Initialize model and download voices"""
try:
print("Initializing model...")
# Download model and config
model_path = hf_hub_download(
repo_id=self.model_repo,
filename="kokoro-v0_19.pth"
)
config_path = hf_hub_download(
repo_id=self.model_repo,
filename="config.json"
)
# Build model directly on GPU if available
with torch.cuda.device(0):
torch.cuda.set_device(0)
self.model = build_model(model_path, 'cuda')
self._model_on_gpu = True
# Download all available voices
voices = [
"af_bella.pt", "af_nicole.pt", "af_sarah.pt", "af_sky.pt", "af.pt",
"am_adam.pt", "am_michael.pt",
"bf_emma.pt", "bf_isabella.pt",
"bm_george.pt", "bm_lewis.pt"
]
for voice in voices:
try:
# Download voice file
# Create full destination path
voice_path = os.path.join(self.voices_dir, voice)
print(f"Attempting to download voice {voice} to {voice_path}")
# Ensure directory exists
os.makedirs(self.voices_dir, exist_ok=True)
# Download with explicit destination
try:
downloaded_path = hf_hub_download(
repo_id=self.model_repo,
filename=f"voices/{voice}",
local_dir=self.voices_dir,
local_dir_use_symlinks=False,
force_filename=voice
)
print(f"Download completed to: {downloaded_path}")
# Verify file exists
if not os.path.exists(voice_path):
print(f"Warning: File not found at expected path {voice_path}")
print(f"Checking download location: {downloaded_path}")
if os.path.exists(downloaded_path):
print(f"Moving file from {downloaded_path} to {voice_path}")
os.rename(downloaded_path, voice_path)
else:
print(f"Verified voice file exists: {voice_path}")
except Exception as e:
print(f"Error downloading voice {voice}: {str(e)}")
import traceback
traceback.print_exc()
except Exception as e:
print(f"Error downloading voice {voice}: {str(e)}")
import traceback
traceback.print_exc()
print("Model initialization complete")
return True
except Exception as e:
print(f"Error initializing model: {str(e)}")
return False
def list_voices(self):
"""List available voices"""
voices = []
try:
# Verify voices directory exists
if not os.path.exists(self.voices_dir):
print(f"Voices directory does not exist: {self.voices_dir}")
return voices
# Get list of files
files = os.listdir(self.voices_dir)
print(f"Found {len(files)} files in voices directory")
# Filter for .pt files
for file in files:
if file.endswith(".pt"):
voices.append(file[:-3]) # Remove .pt extension
print(f"Found voice: {file[:-3]}")
if not voices:
print("No voice files found in voices directory")
except Exception as e:
print(f"Error listing voices: {str(e)}")
import traceback
traceback.print_exc()
return sorted(voices)
def _ensure_model_on_gpu(self):
"""Ensure model is on GPU and stays there"""
if not hasattr(self, '_model_on_gpu') or not self._model_on_gpu:
print("Moving model to GPU...")
with torch.cuda.device(0):
torch.cuda.set_device(0)
# Move model to GPU using torch.nn.Module method
if hasattr(self.model, 'to'):
self.model.to('cuda')
else:
# Fallback for Munch object - move parameters individually
for name in self.model:
if isinstance(self.model[name], torch.Tensor):
self.model[name] = self.model[name].cuda()
self._model_on_gpu = True
def _generate_audio(self, text: str, voicepack: torch.Tensor, lang: str, speed: float) -> np.ndarray:
"""GPU-accelerated audio generation"""
try:
with torch.cuda.device(0):
torch.cuda.set_device(0)
# Move everything to GPU in a single context
if not hasattr(self, '_model_on_gpu') or not self._model_on_gpu:
print("Moving model to GPU...")
if hasattr(self.model, 'to'):
self.model.to('cuda')
else:
for name in self.model:
if isinstance(self.model[name], torch.Tensor):
self.model[name] = self.model[name].cuda()
self._model_on_gpu = True
# Move voicepack to GPU
voicepack = voicepack.cuda()
# Run generation with everything on GPU
audio, _ = generate(
self.model,
text,
voicepack,
lang=lang,
speed=speed
)
return audio
except Exception as e:
print(f"Error in audio generation: {str(e)}")
raise e
def chunk_text(self, text: str, max_chars: int = 300) -> list[str]:
"""Break text into chunks at natural boundaries"""
chunks = []
current_chunk = ""
# Split on sentence boundaries first
sentences = text.replace(".", ".|").replace("!", "!|").replace("?", "?|").replace(";", ";|").split("|")
for sentence in sentences:
if not sentence.strip():
continue
# If sentence is already too long, break on commas
if len(sentence) > max_chars:
parts = sentence.split(",")
for part in parts:
if len(current_chunk) + len(part) <= max_chars:
current_chunk += part + ","
else:
# If part is still too long, break on whitespace
if len(part) > max_chars:
words = part.split()
for word in words:
if len(current_chunk) + len(word) > max_chars:
chunks.append(current_chunk.strip())
current_chunk = word + " "
else:
current_chunk += word + " "
else:
chunks.append(current_chunk.strip())
current_chunk = part + ","
else:
if len(current_chunk) + len(sentence) <= max_chars:
current_chunk += sentence
else:
chunks.append(current_chunk.strip())
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
def generate_speech(self, text: str, voice_name: str, speed: float = 1.0) -> tuple[np.ndarray, float]:
"""Generate speech from text. Returns (audio_array, duration)"""
try:
if not text or not voice_name:
raise ValueError("Text and voice name are required")
start_time = time.time()
# Initialize tokenizer
enc = tiktoken.get_encoding("cl100k_base")
total_tokens = len(enc.encode(text))
# Normalize text
text = normalize_text(text)
if not text:
raise ValueError("Text is empty after normalization")
# Load voice and process within GPU context
with torch.cuda.device(0):
torch.cuda.set_device(0)
voice_path = os.path.join(self.voices_dir, f"{voice_name}.pt")
if not os.path.exists(voice_path):
raise ValueError(f"Voice not found: {voice_name}")
# Load voice directly to GPU
voicepack = torch.load(voice_path, map_location='cuda', weights_only=True)
# Break text into chunks for better memory management
chunks = self.chunk_text(text)
print(f"Processing {len(chunks)} chunks...")
# Ensure model is initialized and on GPU
if self.model is None:
print("Model not initialized, reinitializing...")
if not self.initialize():
raise ValueError("Failed to initialize model")
# Move model to GPU if needed
if not hasattr(self, '_model_on_gpu') or not self._model_on_gpu:
print("Moving model to GPU...")
if hasattr(self.model, 'to'):
self.model.to('cuda')
else:
for name in self.model:
if isinstance(self.model[name], torch.Tensor):
self.model[name] = self.model[name].cuda()
self._model_on_gpu = True
# Process all chunks within same GPU context
audio_chunks = []
for i, chunk in enumerate(chunks):
chunk_start = time.time()
chunk_audio = self._generate_audio(
text=chunk,
voicepack=voicepack,
lang=voice_name[0],
speed=speed
)
chunk_time = time.time() - chunk_start
print(f"Chunk {i+1}/{len(chunks)} processed in {chunk_time:.2f}s")
audio_chunks.append(chunk_audio)
# Concatenate audio chunks
audio = np.concatenate(audio_chunks)
# Calculate metrics
total_time = time.time() - start_time
tokens_per_second = total_tokens / total_time
print(f"\nProcessing Metrics:")
print(f"Total tokens: {total_tokens}")
print(f"Total time: {total_time:.2f}s")
print(f"Tokens per second: {tokens_per_second:.2f}")
return audio, len(audio) / 24000 # Return audio array and duration
except Exception as e:
print(f"Error generating speech: {str(e)}")
raise