Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import numpy as np | |
import time | |
import matplotlib.pyplot as plt | |
from typing import Tuple, List | |
from statistics import mean, median, stdev | |
from lib import ( | |
normalize_text, | |
chunk_text, | |
count_tokens, | |
load_module_from_file, | |
download_model_files, | |
list_voice_files, | |
download_voice_files, | |
ensure_dir, | |
concatenate_audio_chunks | |
) | |
class TTSModel: | |
"""GPU-accelerated TTS model manager""" | |
def __init__(self): | |
self.model = None | |
self.voices_dir = "voices" | |
self.model_repo = "hexgrad/Kokoro-82M" | |
ensure_dir(self.voices_dir) | |
# Load required modules | |
py_modules = ["istftnet", "plbert", "models", "kokoro"] | |
module_files = download_model_files(self.model_repo, [f"{m}.py" for m in py_modules]) | |
for module_name, file_path in zip(py_modules, module_files): | |
load_module_from_file(module_name, file_path) | |
# Import required functions from kokoro module | |
kokoro = __import__("kokoro") | |
self.generate = kokoro.generate | |
self.build_model = __import__("models").build_model | |
def initialize(self) -> bool: | |
"""Initialize model and download voices""" | |
try: | |
print("Initializing model...") | |
# Download model files | |
model_files = download_model_files( | |
self.model_repo, | |
["kokoro-v0_19.pth", "config.json"] | |
) | |
model_path = model_files[0] # kokoro-v0_19.pth | |
# Build model directly on GPU | |
with torch.cuda.device(0): | |
torch.cuda.set_device(0) | |
self.model = self.build_model(model_path, 'cuda') | |
self._model_on_gpu = True | |
print("Model initialization complete") | |
return True | |
except Exception as e: | |
print(f"Error initializing model: {str(e)}") | |
return False | |
def ensure_voice_downloaded(self, voice_name: str) -> bool: | |
"""Ensure specific voice is downloaded""" | |
try: | |
voice_path = os.path.join(self.voices_dir, f"{voice_name}.pt") | |
if not os.path.exists(voice_path): | |
print(f"Downloading voice {voice_name}.pt...") | |
download_voice_files(self.model_repo, [f"{voice_name}.pt"], self.voices_dir) | |
return True | |
except Exception as e: | |
print(f"Error downloading voice {voice_name}: {str(e)}") | |
return False | |
def list_voices(self) -> List[str]: | |
"""List available voices""" | |
return [ | |
"af_bella", "af_nicole", "af_sarah", "af_sky", "af", | |
"am_adam", "am_michael", "bf_emma", "bf_isabella", | |
"bm_george", "bm_lewis" | |
] | |
def _ensure_model_on_gpu(self) -> None: | |
"""Ensure model is on GPU and stays there""" | |
if not hasattr(self, '_model_on_gpu') or not self._model_on_gpu: | |
print("Moving model to GPU...") | |
with torch.cuda.device(0): | |
torch.cuda.set_device(0) | |
if hasattr(self.model, 'to'): | |
self.model.to('cuda') | |
else: | |
for name in self.model: | |
if isinstance(self.model[name], torch.Tensor): | |
self.model[name] = self.model[name].cuda() | |
self._model_on_gpu = True | |
def _generate_audio(self, text: str, voicepack: torch.Tensor, lang: str, speed: float) -> np.ndarray: | |
"""GPU-accelerated audio generation""" | |
try: | |
with torch.cuda.device(0): | |
torch.cuda.set_device(0) | |
# Move everything to GPU in a single context | |
if not hasattr(self, '_model_on_gpu') or not self._model_on_gpu: | |
print("Moving model to GPU...") | |
if hasattr(self.model, 'to'): | |
self.model.to('cuda') | |
else: | |
for name in self.model: | |
if isinstance(self.model[name], torch.Tensor): | |
self.model[name] = self.model[name].cuda() | |
self._model_on_gpu = True | |
# Move voicepack to GPU | |
voicepack = voicepack.cuda() | |
# Run generation with everything on GPU | |
audio, _ = self.generate( | |
self.model, | |
text, | |
voicepack, | |
lang=lang, | |
speed=speed | |
) | |
return audio | |
except Exception as e: | |
print(f"Error in audio generation: {str(e)}") | |
raise e | |
def generate_speech(self, text: str, voice_name: str, speed: float = 1.0, progress_callback=None) -> Tuple[np.ndarray, float]: | |
"""Generate speech from text. Returns (audio_array, duration) | |
Args: | |
text: Input text to convert to speech | |
voice_name: Name of voice to use | |
speed: Speech speed multiplier | |
progress_callback: Optional callback function(chunk_num, total_chunks, tokens_per_sec, rtf) | |
""" | |
try: | |
if not text or not voice_name: | |
raise ValueError("Text and voice name are required") | |
start_time = time.time() | |
# Count tokens and normalize text | |
total_tokens = count_tokens(text) | |
text = normalize_text(text) | |
if not text: | |
raise ValueError("Text is empty after normalization") | |
# Load voice and process within GPU context | |
with torch.cuda.device(0): | |
torch.cuda.set_device(0) | |
voice_path = os.path.join(self.voices_dir, f"{voice_name}.pt") | |
# Ensure voice is downloaded and load directly to GPU | |
if not self.ensure_voice_downloaded(voice_name): | |
raise ValueError(f"Failed to download voice: {voice_name}") | |
voicepack = torch.load(voice_path, map_location='cuda', weights_only=True) | |
# Break text into chunks for better memory management | |
chunks = chunk_text(text) | |
print(f"Processing {len(chunks)} chunks...") | |
# Ensure model is initialized and on GPU | |
if self.model is None: | |
print("Model not initialized, reinitializing...") | |
if not self.initialize(): | |
raise ValueError("Failed to initialize model") | |
# Move model to GPU if needed | |
if not hasattr(self, '_model_on_gpu') or not self._model_on_gpu: | |
print("Moving model to GPU...") | |
if hasattr(self.model, 'to'): | |
self.model.to('cuda') | |
else: | |
for name in self.model: | |
if isinstance(self.model[name], torch.Tensor): | |
self.model[name] = self.model[name].cuda() | |
self._model_on_gpu = True | |
# Process all chunks within same GPU context | |
audio_chunks = [] | |
chunk_times = [] | |
chunk_sizes = [] # Store chunk lengths | |
total_processed_tokens = 0 | |
total_processed_time = 0 | |
for i, chunk in enumerate(chunks): | |
chunk_start = time.time() | |
chunk_audio = self._generate_audio( | |
text=chunk, | |
voicepack=voicepack, | |
lang=voice_name[0], | |
speed=speed | |
) | |
chunk_time = time.time() - chunk_start | |
# Update metrics | |
chunk_tokens = count_tokens(chunk) | |
total_processed_tokens += chunk_tokens | |
total_processed_time += chunk_time | |
current_tokens_per_sec = total_processed_tokens / total_processed_time | |
# Calculate processing speed metrics | |
chunk_duration = len(chunk_audio) / 24000 # audio duration in seconds | |
rtf = chunk_time / chunk_duration | |
times_faster = 1 / rtf | |
chunk_times.append(chunk_time) | |
chunk_sizes.append(len(chunk)) | |
print(f"Chunk {i+1}/{len(chunks)} processed in {chunk_time:.2f}s") | |
print(f"Current tokens/sec: {current_tokens_per_sec:.2f}") | |
print(f"Real-time factor: {rtf:.2f}x") | |
print(f"{times_faster:.1f}x faster than real-time") | |
audio_chunks.append(chunk_audio) | |
# Call progress callback if provided | |
if progress_callback: | |
progress_callback(i + 1, len(chunks), current_tokens_per_sec, rtf) | |
# Concatenate audio chunks | |
audio = concatenate_audio_chunks(audio_chunks) | |
def setup_plot(fig, ax, title): | |
"""Configure plot styling""" | |
# Improve grid | |
ax.grid(True, linestyle="--", alpha=0.3, color="#ffffff") | |
# Set title and labels with better fonts and more padding | |
ax.set_title(title, pad=40, fontsize=16, fontweight="bold", color="#ffffff") | |
ax.set_xlabel(ax.get_xlabel(), fontsize=14, fontweight="medium", color="#ffffff") | |
ax.set_ylabel(ax.get_ylabel(), fontsize=14, fontweight="medium", color="#ffffff") | |
# Improve tick labels | |
ax.tick_params(labelsize=12, colors="#ffffff") | |
# Style spines | |
for spine in ax.spines.values(): | |
spine.set_color("#ffffff") | |
spine.set_alpha(0.3) | |
spine.set_linewidth(0.5) | |
# Set background colors | |
ax.set_facecolor("#1a1a2e") | |
fig.patch.set_facecolor("#1a1a2e") | |
return fig, ax | |
# Set dark style | |
plt.style.use("dark_background") | |
# Create figure with subplots | |
fig = plt.figure(figsize=(18, 16)) | |
fig.patch.set_facecolor("#1a1a2e") | |
# Create subplot grid | |
gs = plt.GridSpec(2, 1, left=0.15, right=0.85, top=0.9, bottom=0.15, hspace=0.4) | |
# Processing times plot | |
ax1 = plt.subplot(gs[0]) | |
chunks_x = list(range(1, len(chunks) + 1)) | |
bars = ax1.bar(chunks_x, chunk_times, color='#ff2a6d', alpha=0.8) | |
# Add statistics lines | |
mean_time = mean(chunk_times) | |
median_time = median(chunk_times) | |
std_time = stdev(chunk_times) if len(chunk_times) > 1 else 0 | |
ax1.axhline(y=mean_time, color='#05d9e8', linestyle='--', | |
label=f'Mean: {mean_time:.2f}s') | |
ax1.axhline(y=median_time, color='#d1f7ff', linestyle=':', | |
label=f'Median: {median_time:.2f}s') | |
# Add ±1 std dev range | |
if len(chunk_times) > 1: | |
ax1.axhspan(mean_time - std_time, mean_time + std_time, | |
color='#8c1eff', alpha=0.2, label='±1 Std Dev') | |
# Add value labels on top of bars | |
for bar in bars: | |
height = bar.get_height() | |
ax1.text(bar.get_x() + bar.get_width() / 2.0, | |
height, | |
f'{height:.2f}s', | |
ha='center', | |
va='bottom', | |
color='white', | |
fontsize=10) | |
ax1.set_xlabel('Chunk Number') | |
ax1.set_ylabel('Processing Time (seconds)') | |
setup_plot(fig, ax1, 'Chunk Processing Times') | |
ax1.legend(facecolor="#1a1a2e", edgecolor="#ffffff") | |
# Chunk sizes plot | |
ax2 = plt.subplot(gs[1]) | |
ax2.plot(chunks_x, chunk_sizes, color='#ff9e00', marker='o', linewidth=2) | |
ax2.set_xlabel('Chunk Number') | |
ax2.set_ylabel('Chunk Size (chars)') | |
setup_plot(fig, ax2, 'Chunk Sizes') | |
# Save plot | |
plt.savefig('chunk_times.png', format='png') | |
plt.close() | |
# Calculate metrics | |
total_time = time.time() - start_time | |
tokens_per_second = total_tokens / total_time | |
print(f"\nProcessing Metrics:") | |
print(f"Total tokens: {total_tokens}") | |
print(f"Total time: {total_time:.2f}s") | |
print(f"Tokens per second: {tokens_per_second:.2f}") | |
print(f"Mean chunk time: {mean_time:.2f}s") | |
print(f"Median chunk time: {median_time:.2f}s") | |
if len(chunk_times) > 1: | |
print(f"Std dev: {std_time:.2f}s") | |
print(f"\nChunk time plot saved as 'chunk_times.png'") | |
return audio, len(audio) / 24000 # Return audio array and duration | |
except Exception as e: | |
print(f"Error generating speech: {str(e)}") | |
raise | |