# import os # import gradio as gr # import time # import math # import logging # import matplotlib.pyplot as plt # import numpy as np # # from lib.mock_tts import MockTTSModel # from lib import format_audio_output # from lib.ui_content import header_html, demo_text_info # from lib.book_utils import get_available_books, get_book_info, get_chapter_text # from lib.text_utils import count_tokens # from tts_model import TTSModel # # Set HF_HOME for faster restarts with cached models/voices # os.environ["HF_HOME"] = "/data/.huggingface" # # Create TTS model instance # model = TTSModel() # # Configure logging # logging.basicConfig(level=logging.DEBUG) # # Suppress matplotlib debug messages # logging.getLogger('matplotlib').setLevel(logging.WARNING) # logger = logging.getLogger(__name__) # logger.debug("Starting app initialization...") # model = TTSModel() # def initialize_model(): # """Initialize model and get voices""" # if model.model is None: # if not model.initialize(): # raise gr.Error("Failed to initialize model") # voices = model.list_voices() # if not voices: # raise gr.Error("No voices found. Please check the voices directory.") # default_voice = 'af_sky' if 'af_sky' in voices else voices[0] if voices else None # return gr.update(choices=voices, value=default_voice) # def update_progress(chunk_num, total_chunks, tokens_per_sec, rtf, progress_state, start_time, gpu_timeout, progress): # # Calculate time metrics # elapsed = time.time() - start_time # gpu_time_left = max(0, gpu_timeout - elapsed) # # Calculate chunk time more accurately # prev_total_time = sum(progress_state["chunk_times"]) if progress_state["chunk_times"] else 0 # chunk_time = elapsed - prev_total_time # # Validate metrics before adding to state # if chunk_time > 0 and tokens_per_sec >= 0: # # Update progress state with validated metrics # progress_state["progress"] = chunk_num / total_chunks # progress_state["total_chunks"] = total_chunks # progress_state["gpu_time_left"] = gpu_time_left # progress_state["tokens_per_sec"].append(float(tokens_per_sec)) # progress_state["rtf"].append(float(rtf)) # progress_state["chunk_times"].append(chunk_time) # # Only update progress display during processing # progress(progress_state["progress"], desc=f"Processing chunk {chunk_num}/{total_chunks} | GPU Time Left: {int(gpu_time_left)}s") # def generate_speech_from_ui(text, voice_names, speed, gpu_timeout, progress=gr.Progress(track_tqdm=False)): # """Handle text-to-speech generation from the Gradio UI""" # try: # if not text or not voice_names: # raise gr.Error("Please enter text and select at least one voice") # start_time = time.time() # # Create progress state with explicit type initialization # progress_state = { # "progress": 0.0, # "tokens_per_sec": [], # Initialize as empty list # "rtf": [], # Initialize as empty list # "chunk_times": [], # Initialize as empty list # "gpu_time_left": float(gpu_timeout), # Ensure float # "total_chunks": 0 # } # # Handle single or multiple voices # if isinstance(voice_names, str): # voice_names = [voice_names] # # Generate speech with progress tracking using combined voice # audio_array, duration, metrics = model.generate_speech( # text, # voice_names, # speed, # gpu_timeout=gpu_timeout, # progress_callback=update_progress, # progress_state=progress_state, # progress=progress # ) # # Format output for Gradio # audio_output, duration_text = format_audio_output(audio_array) # # Create plot and metrics text outside GPU context # fig, metrics_text = create_performance_plot(metrics, voice_names) # return ( # audio_output, # fig, # metrics_text # ) # except Exception as e: # raise gr.Error(f"Generation failed: {str(e)}") # def create_performance_plot(metrics, voice_names): # """Create performance plot and metrics text from generation metrics""" # # Clean and process the data # tokens_per_sec = np.array(metrics["tokens_per_sec"]) # rtf_values = np.array(metrics["rtf"]) # # Calculate statistics using cleaned data # median_tps = float(np.median(tokens_per_sec)) # mean_tps = float(np.mean(tokens_per_sec)) # std_tps = float(np.std(tokens_per_sec)) # # Set y-axis limits based on data range # y_min = max(0, np.min(tokens_per_sec) * 0.9) # y_max = np.max(tokens_per_sec) * 1.1 # # Create plot # fig, ax = plt.subplots(figsize=(10, 5)) # fig.patch.set_facecolor('black') # ax.set_facecolor('black') # # Plot data points # chunk_nums = list(range(1, len(tokens_per_sec) + 1)) # # Plot data points # ax.bar(chunk_nums, tokens_per_sec, color='#ff2a6d', alpha=0.6) # # Set y-axis limits with padding # padding = 0.1 * (y_max - y_min) # ax.set_ylim(max(0, y_min - padding), y_max + padding) # # Add median line # ax.axhline(y=median_tps, color='#05d9e8', linestyle='--', # label=f'Median: {median_tps:.1f} tokens/sec') # # Style improvements # ax.set_xlabel('Chunk Number', fontsize=24, labelpad=20, color='white') # ax.set_ylabel('Tokens per Second', fontsize=24, labelpad=20, color='white') # ax.set_title('Processing Speed by Chunk', fontsize=28, pad=30, color='white') # ax.tick_params(axis='both', which='major', labelsize=20, colors='white') # ax.spines['bottom'].set_color('white') # ax.spines['top'].set_color('white') # ax.spines['left'].set_color('white') # ax.spines['right'].set_color('white') # ax.grid(False) # ax.legend(fontsize=20, facecolor='black', edgecolor='#05d9e8', loc='lower left', # labelcolor='white') # plt.tight_layout() # # Calculate average RTF from individual chunk RTFs # rtf = np.mean(rtf_values) # # Prepare metrics text # metrics_text = ( # f"Median Speed: {median_tps:.1f} tokens/sec (o200k_base)\n" + # f"Real-time Factor: {rtf:.3f}\n" + # f"Real Time Speed: {int(1/rtf)}x\n" + # f"Processing Time: {int(metrics['total_time'])}s\n" + # f"Total Tokens: {metrics['total_tokens']} (o200k_base)\n" + # f"Voices: {', '.join(voice_names)}" # ) # return fig, metrics_text # # Create Gradio interface # with gr.Blocks(title="Kokoro TTS Demo", css=""" # .equal-height { # min-height: 400px; # display: flex; # flex-direction: column; # } # .token-label { # font-size: 1rem; # margin-bottom: 0.3rem; # text-align: center; # padding: 0.2rem 0; # } # .token-count { # color: #4169e1; # } # """) as demo: # gr.HTML(header_html) # with gr.Row(): # # Column 1: Text Input and Book Selection # with gr.Column(elem_classes="equal-height"): # # Book selection # books = get_available_books() # book_dropdown = gr.Dropdown( # label="Select Book", # choices=[book['label'] for book in books], # value=books[0]['label'] if books else None, # type="value", # allow_custom_value=True # ) # # Initialize chapters for first book # initial_book = books[0]['value'] if books else None # initial_chapters = [] # if initial_book: # book_path = os.path.join("texts/processed", initial_book) # _, chapters = get_book_info(book_path) # initial_chapters = [ch['title'] for ch in chapters] # # Chapter selection with initial chapters # chapter_dropdown = gr.Dropdown( # label="Select Chapter", # choices=initial_chapters, # value=initial_chapters[0] if initial_chapters else None, # type="value", # allow_custom_value=True # ) # lab_tps = 175 # lab_rts = 50 # # Text input area with initial chapter text # initial_text = "" # if initial_chapters and initial_book: # book_path = os.path.join("texts/processed", initial_book) # _, chapters = get_book_info(book_path) # if chapters: # initial_text = get_chapter_text(book_path, chapters[0]['id']) # tokens = count_tokens(initial_text) # time_estimate = math.ceil(tokens / lab_tps) # output_estimate = (time_estimate * lab_rts)//60 # initial_label = f'