File size: 16,385 Bytes
54de0ce
 
81d64f0
98f1356
81d64f0
a126d00
 
 
73d590c
54de0ce
 
 
fb43b4e
54de0ce
cf663b6
 
fb43b4e
cf663b6
fb780a9
54de0ce
 
 
 
5e6bdd8
ebc0696
54de0ce
cf663b6
fb780a9
cf663b6
 
fb43b4e
fb780a9
54de0ce
ebc0696
 
f5915fd
635f007
300dc16
635f007
1567c2d
d430de8
a520615
85fcd3c
73dbaa9
a520615
641afe5
635f007
 
1c22955
6729e8e
895e9c4
d41c3ed
e2e4977
4028449
 
50a9d0f
6eb9ea3
 
 
 
 
 
b21342c
 
 
 
 
 
 
 
 
62d3fef
5782b8e
e27b102
 
138b27f
 
fbe2075
 
 
85fcd3c
e27b102
 
 
62de84c
5782b8e
e27b102
a5cfbc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6729e8e
e1d1d80
6729e8e
 
 
 
 
 
 
 
 
6440f80
 
 
 
 
 
 
e2e4977
 
138b27f
 
efc3af1
 
fbe2075
 
 
3ecf742
00bdfef
6440f80
efc3af1
00bdfef
efc3af1
6440f80
00bdfef
efc3af1
6440f80
00bdfef
 
 
4a6da64
6729e8e
 
 
 
 
 
 
 
 
 
ffcd9ff
6729e8e
6440f80
 
 
 
 
6729e8e
4028449
d430de8
 
138b27f
 
fbe2075
 
 
3ecf742
6440f80
 
4a6da64
6440f80
d430de8
635f007
d41c3ed
 
 
 
 
 
 
 
 
 
 
 
 
5782b8e
04c285e
d430de8
 
a14be06
0f9837b
ee5c009
5708f2f
ee5c009
d41c3ed
 
d430de8
d41c3ed
 
5782b8e
d41c3ed
 
 
 
 
112493b
 
 
 
 
 
 
 
 
 
 
 
 
a5cfbc2
 
 
 
 
 
 
 
 
 
 
4b8ade9
 
 
8dc53c9
76a6bb1
8dc53c9
4b8ade9
 
04c285e
d3f7823
641afe5
f5915fd
635f007
4028449
dc8b787
50a9d0f
e931762
769b7d2
635f007
304fce9
f1cae8b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
INTROTXT = """# 


**a Large Scale Model with a whole new pre-processing pipeline, added features and also some tweaks to the architecture is being trained right now.**


_______________________________________________________________________________________________________________________________________________________________

kudos to mrfakename for the base gradio code I'm borrowing here. 

**ๆ—ฅๆœฌ่ชž็”จ**

You will probably experience slight artifacts at the beginning or at the end of the output, which is not there on my server.

Unfortunately, due to the variation in how floating-point operations are performed across different devices,
and given the intrinsic characteristics of models that incorporate diffusion components,
it is unlikely that you will achieve identical results to those obtained on my server, where the model was originally trained. 
So, the output you're about to hear may not accurately reflect the true performance of the model.
it is also not limited to the artifacts, even the prosody and natural-ness of the speech is affected.


by [Soshyant](https://twitter.com/MystiqCaleid)

**NOTE: Punctuations are important!**


=========
้Ÿณๅฃฐใฎ้–‹ๅง‹ๆ™‚ใพใŸใฏ็ต‚ไบ†ๆ™‚ใซใ€ใ‚‚ใจใ‚‚ใจๅญ˜ๅœจใ—ใชใ‹ใฃใŸใฏใšใฎใ‚ขใƒผใƒ†ใ‚ฃใƒ•ใ‚กใ‚ฏใƒˆใŒใ€ใ“ใ“ใง็™บ็”Ÿใ™ใ‚‹ๅฏ่ƒฝๆ€งใŒใ‚ใ‚Šใพใ™ใ€‚
ๆฎ‹ๅฟตใชใŒใ‚‰ใ€็•ฐใชใ‚‹ใƒ‡ใƒใ‚คใ‚นใงๆตฎๅ‹•ๅฐๆ•ฐ็‚นๆผ”็ฎ—ใŒ็•ฐใชใ‚‹ๆ–นๆณ•ใง่กŒใ‚ใ‚Œใ‚‹ใŸใ‚ใ€ใŠใ‚ˆใณDiffusionใ‚ณใƒณใƒใƒผใƒใƒณใƒˆใ‚’ๅ–ใ‚Šๅ…ฅใ‚ŒใŸใƒขใƒ‡ใƒซใฎๅ›บๆœ‰ใฎ็‰นๆ€งใ‚’่€ƒๆ…ฎใ™ใ‚‹ใจใ€
ใƒขใƒ‡ใƒซใŒๅ…ƒใ€…ใƒˆใƒฌใƒผใƒ‹ใƒณใ‚ฐใ•ใ‚ŒใŸใƒ‡ใƒใ‚คใ‚นใงๅพ—ใ‚‰ใ‚ŒใŸ็ตๆžœใจๅŒใ˜็ตๆžœใ‚’ๅพ—ใ‚‹ใ“ใจใฏ้›ฃใ—ใ„ใงใ—ใ‚‡ใ†ใ€‚
ใใฎ็ตๆžœใ€ไปฅไธ‹ใงไฝ“้จ“ใ™ใ‚‹ใƒ‘ใƒ•ใ‚ฉใƒผใƒžใƒณใ‚นใฏใƒขใƒ‡ใƒซใฎ็œŸใฎๆ€ง่ƒฝใ‚’ๆญฃ็ขบใซๅๆ˜ ใ—ใฆใ„ใพใ›ใ‚“ใ€‚
ใใฎใŸใ‚ใ€ใ‚ขใƒผใƒ†ใ‚ฃใƒ•ใ‚กใ‚ฏใƒˆใฎๅ•้กŒใ ใ‘ใงใฏใชใใ€ใƒŠใƒใƒฅใƒฉใƒซใƒใ‚นใ‚„้Ÿณๅฃฐใ‚ฏใ‚ชใƒชใƒ†ใ‚ฃใƒผใซใ‚‚ๅŠใณใพใ™ใ€‚

**NOTE: ๅฅ่ชญ็‚นใฏใจใฆใ‚‚ๅคงไบ‹ใงใ™!**

"""
import gradio as gr
import random
import styletts2importable
import ljspeechimportable
import torch
import os
from txtsplit import txtsplit
import numpy as np
import pickle
theme = gr.themes.Base(
    font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)

from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule

voicelist = ['1','2','3']
voices = {}
# import phonemizer
# global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True,  with_stress=True)
# todo: cache computed style, load using pickle
# if os.path.exists('voices.pkl'):
    # with open('voices.pkl', 'rb') as f:
        # voices = pickle.load(f)
# else:
for v in voicelist:
    voices[v] = styletts2importable.compute_style(f'voices/{v}.wav')
# def synthesize(text, voice, multispeakersteps):
#     if text.strip() == "":
#         raise gr.Error("You must enter some text")
#     # if len(global_phonemizer.phonemize([text])) > 300:
#     if len(text) > 300:
#         raise gr.Error("Text must be under 300 characters")
#     v = voice.lower()
#     # return (24000, styletts2importable.inference(text, voices[v], alpha=0.3, beta=0.7, diffusion_steps=7, embedding_scale=1))
#     return (24000, styletts2importable.inference(text, voices[v], alpha=0.3, beta=0.7, diffusion_steps=multispeakersteps, embedding_scale=1))
if not torch.cuda.is_available(): INTROTXT += "\n\n### on CPU, it'll run rather slower, but not too much."
def synthesize(text, voice, lngsteps,embscale,alpha, beta, password, progress=gr.Progress()):
    if text.strip() == "":
        raise gr.Error("You must enter some text")
    if len(text) > 50000:
        raise gr.Error("Text must be <50k characters")
    print("*** saying ***")
    print(text)
    print("*** end ***")
    texts = txtsplit(text)
    v = voice.lower()
    audios = []
    for t in progress.tqdm(texts):
        print(t)
        audios.append(styletts2importable.inference(t, voices[v], alpha=alpha, beta=beta, diffusion_steps=lngsteps, embedding_scale=embscale))
    return (24000, np.concatenate(audios))
# def longsynthesize(text, voice, lngsteps, password, progress=gr.Progress()):
#     if password == os.environ['ACCESS_CODE']:
#         if text.strip() == "":
#             raise gr.Error("You must enter some text")
#         if lngsteps > 25:
#             raise gr.Error("Max 25 steps")
#         if lngsteps < 5:
#             raise gr.Error("Min 5 steps")
#         texts = split_and_recombine_text(text)
#         v = voice.lower()
#         audios = []
#         for t in progress.tqdm(texts):
#             audios.append(styletts2importable.inference(t, voices[v], alpha=0.3, beta=0.7, diffusion_steps=lngsteps, embedding_scale=1))
#         return (24000, np.concatenate(audios))
#     else:
#         raise gr.Error('Wrong access code')
    
def clsynthesize(text, voice, vcsteps, embscale, alpha, beta, progress=gr.Progress()):


    torch.manual_seed(0)
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True


    random.seed(0)

    # if text.strip() == "":
    #     raise gr.Error("You must enter some text")
    # # if global_phonemizer.phonemize([text]) > 300:
    # if len(text) > 400:
    #     raise gr.Error("Text must be under 400 characters")
    # # return (24000, styletts2importable.inference(text, styletts2importable.compute_style(voice), alpha=0.3, beta=0.7, diffusion_steps=20, embedding_scale=1))
    # return (24000, styletts2importable.inference(text, styletts2importable.compute_style(voice), alpha=0.3, beta=0.7, diffusion_steps=vcsteps, embedding_scale=1))
    if text.strip() == "":
        raise gr.Error("You must enter some text")
    if len(text) > 50000:
        raise gr.Error("Text must be <50k characters")
    if embscale > 1.3 and len(text) < 20:
        gr.Warning("WARNING: You entered short text, you may get static!")
    print("*** saying ***")
    print(text)
    print("*** end ***")
    texts = txtsplit(text)
    
    audios = []
    # vs = styletts2importable.compute_style(voice)
    
    # print(vs)
    for t in progress.tqdm(texts):
        audios.append(styletts2importable.inference(t, voices[v], alpha=alpha, beta=beta, diffusion_steps=vcsteps, embedding_scale=embscale))
        # audios.append(styletts2importable.inference(t, vs, diffusion_steps=10, alpha=0.3, beta=0.7, embedding_scale=5))
    return (24000, np.concatenate(audios))


    
def ljsynthesize(text, steps,embscale, progress=gr.Progress()):



    torch.manual_seed(0)
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True


    random.seed(0)


    
    # if text.strip() == "":
    #     raise gr.Error("You must enter some text")
    # # if global_phonemizer.phonemize([text]) > 300:
    # if len(text) > 400:
    #     raise gr.Error("Text must be under 400 characters")
    noise = torch.tanh(torch.randn(1,1,256).to('cuda' if torch.cuda.is_available() else 'cpu'))
    # return (24000, Text-guided Inferenceimportable.inference(text, noise, diffusion_steps=7, embedding_scale=1))
    if text.strip() == "":
        raise gr.Error("You must enter some text")
    if len(text) > 150000:
        raise gr.Error("Text must be <150k characters")
    print("*** saying ***")
    print(text)
    print("*** end ***")
    texts = txtsplit(text)
    audios = []
    for t in progress.tqdm(texts):
        audios.append(ljspeechimportable.inference(t, noise, diffusion_steps=steps, embedding_scale=embscale))
    return (24000, np.concatenate(audios))


# with gr.Blocks() as vctk:
#     with gr.Row():
#         with gr.Column(scale=1):
#             clinp = gr.Textbox(label="Text", info="Enter the text | ใƒ†ใ‚ญใ‚นใƒˆใ‚’ๅ…ฅใ‚Œใฆใใ ใ•ใ„ใ€็Ÿญใ™ใŽใ‚‹ใจใฒใฉใใชใ‚Šใพใ™",value="ใ‚ใชใŸใŒใ„ใชใ„ใจใ€ไธ–็•Œใฏ่‰ฒ่คชใ›ใฆ่ฆ‹ใˆใพใ™ใ€‚ใ‚ใชใŸใฎ็ฌ‘้ก”ใŒ็งใฎๆ—ฅใ€…ใ‚’ๆ˜Žใ‚‹ใ็…งใ‚‰ใ—ใฆใ„ใพใ™ใ€‚ใ‚ใชใŸใŒใ„ใชใ„ๆ—ฅใฏใ€ใพใ‚‹ใงๅ†ฌใฎใ‚ˆใ†ใซๅฏ’ใใ€ๆš—ใ„ใงใ™.", interactive=True)
#             voice = gr.Dropdown(voicelist, label="Voice", info="Select a default voice.", interactive=True)
#             vcsteps = gr.Slider(minimum=3, maximum=20, value=5, step=1, label="Diffusion Steps", info="You'll get more variation in the results if you increase it, doesn't necessarily improve anything.| ใ“ใ‚Œใ‚’ไธŠใ’ใŸใ‚‰ใ‚‚ใฃใจใ‚จใƒขใƒผใ‚ทใƒงใƒŠใƒซใช้Ÿณๅฃฐใซใชใ‚Šใพใ™๏ผˆไธ‹ใ’ใŸใ‚‰ใใฎ้€†๏ผ‰ใ€ๅข—ใ‚„ใ—ใ™ใŽใ‚‹ใจใ ใ‚ใซใชใ‚‹ใฎใงใ€ใ”ๆณจๆ„ใใ ใ•ใ„", interactive=True)
#             embscale = gr.Slider(minimum=1, maximum=10, value=1.8, step=0.1, label="Embedding Scale (READ WARNING BELOW)", info="ใ“ใ‚Œใ‚’ไธŠใ’ใŸใ‚‰ใ‚‚ใฃใจใ‚จใƒขใƒผใ‚ทใƒงใƒŠใƒซใช้Ÿณๅฃฐใซใชใ‚Šใพใ™๏ผˆไธ‹ใ’ใŸใ‚‰ใใฎ้€†๏ผ‰ใ€ๅข—ใ‚„ใ—ใ™ใŽใ‚‹ใจใ ใ‚ใซใชใ‚‹ใฎใงใ€ใ”ๆณจๆ„ใใ ใ•ใ„", interactive=True)
#             alpha = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="Alpha", interactive=True)
#             beta = gr.Slider(minimum=0, maximum=1, value=0.4, step=0.1, label="Beta", interactive=True)
#         with gr.Column(scale=1):
#             clbtn = gr.Button("Synthesize", variant="primary")
#             claudio = gr.Audio(interactive=False, label="Synthesized Audio", waveform_options={'waveform_progress_color': '#3C82F6'})
#             clbtn.click(clsynthesize, inputs=[clinp, voice, vcsteps, embscale, alpha, beta], outputs=[claudio], concurrency_limit=4)
    
with gr.Blocks() as vctk:
    with gr.Row():
        with gr.Column(scale=1):
            inp = gr.Textbox(label="Text", info="Enter the text | ใƒ†ใ‚ญใ‚นใƒˆใ‚’ๅ…ฅใ‚Œใฆใใ ใ•ใ„ใ€็Ÿญใ™ใŽใ‚‹ใจใฒใฉใใชใ‚Šใพใ™.", value="้•ทใ„้–“ใ€็š†ใ•ใ‚“ใจใฎ็น‹ใŒใ‚Šใฏใ€็งใซใจใฃใฆใ‹ใ‘ใŒใˆใฎใชใ„ใ‚‚ใฎใงใ—ใŸใ€‚่จ€่‘‰ใ‚’ไบคใ‚ใ—ใ€่€ƒใˆใ‚’ๅ…ฑๆœ‰ใ—ใ€ไบ’ใ„ใฎไธ–็•Œใ‚’ๅฐ‘ใ—ใšใค็†่งฃใ—ใฆใใŸใ“ใฎๆ™‚้–“ใฏใ€็งใฎไบบ็”ŸใซใŠใ„ใฆ้žๅธธใซ้‡่ฆใชใ‚‚ใฎใงใ™.",  interactive=True)
            voice = gr.Dropdown(voicelist, label="Voice", info="Select a default voice.", value='3', interactive=True)
            embscale = gr.Slider(minimum=1, maximum=10, value=1, step=0.1, label="Embedding Scale (READ WARNING BELOW)", info="ใ“ใ‚Œใ‚’ไธŠใ’ใŸใ‚‰ใ‚‚ใฃใจใ‚จใƒขใƒผใ‚ทใƒงใƒŠใƒซใช้Ÿณๅฃฐใซใชใ‚Šใพใ™๏ผˆไธ‹ใ’ใŸใ‚‰ใใฎ้€†๏ผ‰ใ€ๅข—ใ‚„ใ—ใ™ใŽใ‚‹ใจใ ใ‚ใซใชใ‚‹ใฎใงใ€ใ”ๆณจๆ„ใใ ใ•ใ„", interactive=True)
            alpha = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="Alpha",info ="Closer to 0 means similar to the Audio Reference | ใ‚ผใƒญใซ่ฟ‘ใ„ใปใฉใ€้Ÿณๅฃฐใ‚ตใƒณใƒ—ใƒซใฎใ‚นใ‚ฟใ‚คใƒซใซ่ฟ‘ใ„้Ÿณๅฃฐใซใชใ‚Šใพใ™", interactive=True)
            beta = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label="Beta",info ="alphaใจๅŒใ˜ใ", interactive=True)
            multispeakersteps = gr.Slider(minimum=3, maximum=15, value=3, step=1, label="Diffusion Steps", interactive=True)
            # use_gruut = gr.Checkbox(label="Use alternate phonemizer (Gruut) - Experimental")
        with gr.Column(scale=1):
            btn = gr.Button("Synthesize", variant="primary")
            audio = gr.Audio(interactive=False, label="Synthesized Audio", waveform_options={'waveform_progress_color': '#3C82F6'})
            btn.click(synthesize, inputs=[inp, voice, multispeakersteps,embscale,alpha,beta], outputs=[audio], concurrency_limit=4)




    
# with gr.Blocks() as clone:
#     with gr.Row():
#         with gr.Column(scale=1):
#             clinp = gr.Textbox(label="Text", info="Enter the text | ใƒ†ใ‚ญใ‚นใƒˆใ‚’ๅ…ฅใ‚Œใฆใใ ใ•ใ„ใ€็Ÿญใ™ใŽใ‚‹ใจใฒใฉใใชใ‚Šใพใ™", interactive=True)
#             clvoice = gr.Audio(label="Voice", interactive=True, type='filepath', max_length=300, waveform_options={'waveform_progress_color': '#3C82F6'})
#             vcsteps = gr.Slider(minimum=3, maximum=10, value=2, step=1, label="Diffusion Steps", info="ใ“ใ‚Œใ‚’ไธŠใ’ใŸใ‚‰ใ‚‚ใฃใจใ‚จใƒขใƒผใ‚ทใƒงใƒŠใƒซใช้Ÿณๅฃฐใซใชใ‚Šใพใ™๏ผˆไธ‹ใ’ใŸใ‚‰ใใฎ้€†๏ผ‰ใ€ๅข—ใ‚„ใ—ใ™ใŽใ‚‹ใจใ ใ‚ใซใชใ‚‹ใฎใงใ€ใ”ๆณจๆ„ใใ ใ•ใ„", interactive=True)
#             embscale = gr.Slider(minimum=1, maximum=10, value=1, step=0.1, label="Embedding Scale (READ WARNING BELOW)", info="Defaults to 1. WARNING: If you set this too high and generate text that's too short you will get static!", interactive=True)
#             alpha = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="Alpha", info="Defaults to 0.3", interactive=True)
#             beta = gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1, label="Beta", info="Defaults to 0.7", interactive=True)
#         with gr.Column(scale=1):
#             clbtn = gr.Button("Synthesize", variant="primary")
#             claudio = gr.Audio(interactive=False, label="Synthesized Audio", waveform_options={'waveform_progress_color': '#3C82F6'})
#             clbtn.click(clsynthesize, inputs=[clinp, clvoice, vcsteps, embscale, alpha, beta], outputs=[claudio], concurrency_limit=4)
# with gr.Blocks() as longText:
#     with gr.Row():
#         with gr.Column(scale=1):
#             lnginp = gr.Textbox(label="Text", info="What would you like StyleTTS 2 to read? It works better on full sentences.", interactive=True)
#             lngvoice = gr.Dropdown(voicelist, label="Voice", info="Select a default voice.", value='m-us-1', interactive=True)
#             lngsteps = gr.Slider(minimum=5, maximum=25, value=10, step=1, label="Diffusion Steps", info="Higher = better quality, but slower", interactive=True)
#             lngpwd = gr.Textbox(label="Access code", info="This feature is in beta. You need an access code to use it as it uses more resources and we would like to prevent abuse")
#         with gr.Column(scale=1):
#             lngbtn = gr.Button("Synthesize", variant="primary")
#             lngaudio = gr.Audio(interactive=False, label="Synthesized Audio")
#             lngbtn.click(longsynthesize, inputs=[lnginp, lngvoice, lngsteps, lngpwd], outputs=[lngaudio], concurrency_limit=4)
with gr.Blocks() as lj:
    with gr.Row():
        with gr.Column(scale=1):
            ljinp = gr.Textbox(label="Text", info="Enter the text | ใƒ†ใ‚ญใ‚นใƒˆใ‚’ๅ…ฅใ‚Œใฆใใ ใ•ใ„ใ€็Ÿญใ™ใŽใ‚‹ใจใฒใฉใใชใ‚Šใพใ™.", interactive=True, value="ใ‚ใชใŸใŒใ„ใชใ„ใจใ€ไธ–็•Œใฏ่‰ฒ่คชใ›ใฆ่ฆ‹ใˆใพใ™ใ€‚ใ‚ใชใŸใฎ็ฌ‘้ก”ใŒ็งใฎๆ—ฅใ€…ใ‚’ๆ˜Žใ‚‹ใ็…งใ‚‰ใ—ใฆใ„ใพใ™ใ€‚ใ‚ใชใŸใŒใ„ใชใ„ๆ—ฅใฏใ€ใพใ‚‹ใงๅ†ฌใฎใ‚ˆใ†ใซๅฏ’ใใ€ๆš—ใ„ใงใ™.")
            embscale = gr.Slider(minimum=1, maximum=3, value=1.1, step=0.1, label="Embedding Scale (READ WARNING BELOW)", info="ใ“ใ‚Œใ‚’ไธŠใ’ใŸใ‚‰ใ‚‚ใฃใจใ‚จใƒขใƒผใ‚ทใƒงใƒŠใƒซใช้Ÿณๅฃฐใซใชใ‚Šใพใ™๏ผˆไธ‹ใ’ใŸใ‚‰ใใฎ้€†๏ผ‰ใ€ๅข—ใ‚„ใ—ใ™ใŽใ‚‹ใจใ ใ‚ใซใชใ‚‹ใฎใงใ€ใ”ๆณจๆ„ใใ ใ•ใ„(1ใ‹ใ‚‰ - 2ใพใงใฎ็ฏ„ๅ›ฒใงๆœ€้ฉใ€‚)", interactive=True)
            ljsteps = gr.Slider(minimum=3, maximum=20, value=5, step=1, label="Diffusion Steps", info="You'll get more variation in the results if you increase it, doesn't necessarily improve anything.| ใ“ใ‚Œใ‚’ไธŠใ’ใŸใ‚‰ใ‚‚ใฃใจใ‚จใƒขใƒผใ‚ทใƒงใƒŠใƒซใช้Ÿณๅฃฐใซใชใ‚Šใพใ™๏ผˆไธ‹ใ’ใŸใ‚‰ใใฎ้€†๏ผ‰ใ€ๅข—ใ‚„ใ—ใ™ใŽใ‚‹ใจใ ใ‚ใซใชใ‚‹ใฎใงใ€ใ”ๆณจๆ„ใใ ใ•ใ„", interactive=True)
        with gr.Column(scale=1):
            ljbtn = gr.Button("Synthesize", variant="primary")
            ljaudio = gr.Audio(interactive=False, label="Synthesized Audio", waveform_options={'waveform_progress_color': '#3C82F6'})
            ljbtn.click(ljsynthesize, inputs=[ljinp, ljsteps, embscale], outputs=[ljaudio], concurrency_limit=4)
with gr.Blocks(title="StyleTTS 2", css="footer{display:none !important}", theme="NoCrypt/miku") as demo:
    gr.Markdown(INTROTXT)
    gr.DuplicateButton("Duplicate Space")
    # gr.TabbedInterface([vctk, clone, lj, longText], ['Multi-Voice', 'Voice Cloning', 'Text-guided Inference', 'Long Text [Beta]'])
    gr.TabbedInterface([lj, vctk], ['|Text-guided Inference|','With Reference Audio(Not Optimized)','Text-guided Inference', 'Long Text [Beta]'])
    gr.Markdown("""
the base code was borrowed from -> [mrfakename](https://twitter.com/realmrfakename). Neither of us are affiliated with the StyleTTS 2's authors.
""") # Please do not remove this line.
if __name__ == "__main__":
    # demo.queue(api_open=False, max_size=15).launch(show_api=False)
    demo.queue(api_open=False, max_size=15).launch(show_api=False)