Spaces:
Running
Running
Upload /voices with huggingface_hub
Browse files
voices
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Phoneme-Level BERT for Enhanced Prosody of Text-to-Speech with Grapheme Predictions
|
2 |
+
|
3 |
+
### Yinghao Aaron Li, Cong Han, Xilin Jiang, Nima Mesgarani
|
4 |
+
|
5 |
+
> Large-scale pre-trained language models have been shown to be helpful in improving the naturalness of text-to-speech (TTS) models by enabling them to produce more naturalistic prosodic patterns. However, these models are usually word-level or sup-phoneme-level and jointly trained with phonemes, making them inefficient for the downstream TTS task where only phonemes are needed. In this work, we propose a phoneme-level BERT (PL-BERT) with a pretext task of predicting the corresponding graphemes along with the regular masked phoneme predictions. Subjective evaluations show that our phoneme-level BERT encoder has significantly improved the mean opinion scores (MOS) of rated naturalness of synthesized speech compared with the state-of-the-art (SOTA) StyleTTS baseline on out-of-distribution (OOD) texts.
|
6 |
+
|
7 |
+
Paper: [https://arxiv.org/abs/2301.08810](https://arxiv.org/abs/2301.08810)
|
8 |
+
|
9 |
+
Audio samples: [https://pl-bert.github.io/](https://pl-bert.github.io/)
|
10 |
+
|
11 |
+
## Pre-requisites
|
12 |
+
1. Python >= 3.7
|
13 |
+
2. Clone this repository:
|
14 |
+
```bash
|
15 |
+
git clone https://github.com/yl4579/PL-BERT.git
|
16 |
+
cd PL-BERT
|
17 |
+
```
|
18 |
+
3. Create a new environment (recommended):
|
19 |
+
```bash
|
20 |
+
conda create --name BERT python=3.8
|
21 |
+
conda activate BERT
|
22 |
+
python -m ipykernel install --user --name BERT --display-name "BERT"
|
23 |
+
```
|
24 |
+
4. Install python requirements:
|
25 |
+
```bash
|
26 |
+
pip install pandas singleton-decorator datasets "transformers<4.33.3" accelerate nltk phonemizer sacremoses pebble
|
27 |
+
```
|
28 |
+
|
29 |
+
## Preprocessing
|
30 |
+
Please refer to the notebook [preprocess.ipynb](https://github.com/yl4579/PL-BERT/blob/main/preprocess.ipynb) for more details. The preprocessing is for English Wikipedia dataset only. I will make a new branch for Japanese if I have extra time to demostrate training on other languages. You may also refer to [#6](https://github.com/yl4579/PL-BERT/issues/6#issuecomment-1797869275) for preprocessing in other languages like Japanese.
|
31 |
+
|
32 |
+
## Trianing
|
33 |
+
Please run each cell in the notebook [train.ipynb](https://github.com/yl4579/PL-BERT/blob/main/train.ipynb). You will need to change the line
|
34 |
+
`config_path = "Configs/config.yml"` in cell 2 if you wish to use a different config file. The training code is in Jupyter notebook primarily because the initial epxeriment was conducted in Jupyter notebook, but you can easily make it a Python script if you want to.
|
35 |
+
|
36 |
+
## Finetuning
|
37 |
+
Here is an example of how to use it for StyleTTS finetuning. You can use it for other TTS models by replacing the text encoder with the pre-trained PL-BERT.
|
38 |
+
1. Modify line 683 in [models.py](https://github.com/yl4579/StyleTTS/blob/main/models.py#L683) with the following code to load BERT model in to StyleTTS:
|
39 |
+
```python
|
40 |
+
from transformers import AlbertConfig, AlbertModel
|
41 |
+
|
42 |
+
log_dir = "YOUR PL-BERT CHECKPOINT PATH"
|
43 |
+
config_path = os.path.join(log_dir, "config.yml")
|
44 |
+
plbert_config = yaml.safe_load(open(config_path))
|
45 |
+
|
46 |
+
albert_base_configuration = AlbertConfig(**plbert_config['model_params'])
|
47 |
+
bert = AlbertModel(albert_base_configuration)
|
48 |
+
|
49 |
+
files = os.listdir(log_dir)
|
50 |
+
ckpts = []
|
51 |
+
for f in os.listdir(log_dir):
|
52 |
+
if f.startswith("step_"): ckpts.append(f)
|
53 |
+
|
54 |
+
iters = [int(f.split('_')[-1].split('.')[0]) for f in ckpts if os.path.isfile(os.path.join(log_dir, f))]
|
55 |
+
iters = sorted(iters)[-1]
|
56 |
+
|
57 |
+
checkpoint = torch.load(log_dir + "/step_" + str(iters) + ".t7", map_location='cpu')
|
58 |
+
state_dict = checkpoint['net']
|
59 |
+
from collections import OrderedDict
|
60 |
+
new_state_dict = OrderedDict()
|
61 |
+
for k, v in state_dict.items():
|
62 |
+
name = k[7:] # remove `module.`
|
63 |
+
if name.startswith('encoder.'):
|
64 |
+
name = name[8:] # remove `encoder.`
|
65 |
+
new_state_dict[name] = v
|
66 |
+
bert.load_state_dict(new_state_dict)
|
67 |
+
|
68 |
+
nets = Munch(bert=bert,
|
69 |
+
# linear projection to match the hidden size (BERT 768, StyleTTS 512)
|
70 |
+
bert_encoder=nn.Linear(plbert_config['model_params']['hidden_size'], args.hidden_dim),
|
71 |
+
predictor=predictor,
|
72 |
+
decoder=decoder,
|
73 |
+
pitch_extractor=pitch_extractor,
|
74 |
+
text_encoder=text_encoder,
|
75 |
+
style_encoder=style_encoder,
|
76 |
+
text_aligner = text_aligner,
|
77 |
+
discriminator=discriminator)
|
78 |
+
```
|
79 |
+
2. Modify line 126 in [train_second.py](https://github.com/yl4579/StyleTTS/blob/main/train_second.py#L126) with the following code to adjust the learning rate of BERT model:
|
80 |
+
```python
|
81 |
+
# for stability
|
82 |
+
for g in optimizer.optimizers['bert'].param_groups:
|
83 |
+
g['betas'] = (0.9, 0.99)
|
84 |
+
g['lr'] = 1e-5
|
85 |
+
g['initial_lr'] = 1e-5
|
86 |
+
g['min_lr'] = 0
|
87 |
+
g['weight_decay'] = 0.01
|
88 |
+
```
|
89 |
+
3. Modify line 211 in [train_second.py](https://github.com/yl4579/StyleTTS/blob/main/train_second.py#L211) with the following code to replace text encoder with BERT encoder:
|
90 |
+
```python
|
91 |
+
bert_dur = model.bert(texts, attention_mask=(~text_mask).int()).last_hidden_state
|
92 |
+
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
93 |
+
d, _ = model.predictor(d_en, s,
|
94 |
+
input_lengths,
|
95 |
+
s2s_attn_mono,
|
96 |
+
m)
|
97 |
+
```
|
98 |
+
[line 257](https://github.com/yl4579/StyleTTS/blob/main/train_second.py#L257):
|
99 |
+
```python
|
100 |
+
_, p = model.predictor(d_en, s,
|
101 |
+
input_lengths,
|
102 |
+
s2s_attn_mono,
|
103 |
+
m)
|
104 |
+
```
|
105 |
+
and [line 415](https://github.com/yl4579/StyleTTS/blob/main/train_second.py#L415):
|
106 |
+
```python
|
107 |
+
bert_dur = model.bert(texts, attention_mask=(~text_mask).int()).last_hidden_state
|
108 |
+
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
109 |
+
d, p = model.predictor(d_en, s,
|
110 |
+
input_lengths,
|
111 |
+
s2s_attn_mono,
|
112 |
+
m)
|
113 |
+
```
|
114 |
+
|
115 |
+
4. Modify line 347 in [train_second.py](https://github.com/yl4579/StyleTTS/blob/main/train_second.py#L347) with the following code to make sure parameters of BERT model are updated:
|
116 |
+
```python
|
117 |
+
optimizer.step('bert_encoder')
|
118 |
+
optimizer.step('bert')
|
119 |
+
```
|
120 |
+
|
121 |
+
The pre-trained PL-BERT on Wikipedia for 1M steps can be downloaded at: [PL-BERT link](https://drive.google.com/file/d/19gzPmWKdmakeVszSNuUtVMMBaFYMQqJ7/view?usp=sharing).
|
122 |
+
|
123 |
+
The demo on LJSpeech dataset along with the pre-modified StyleTTS repo and pre-trained models can be downloaded here: [StyleTTS Link](https://drive.google.com/file/d/18DU4JrW1rhySrIk-XSxZkXt2MuznxoM-/view?usp=sharing). This zip file contains the code modification above, the pre-trained PL-BERT model listed above, pre-trained StyleTTS w/ PL-BERT, pre-trained StyleTTS w/o PL-BERT and pre-trained HifiGAN on LJSpeech from the StyleTTS repo.
|
124 |
+
|
125 |
+
## References
|
126 |
+
- [NVIDIA/NeMo-text-processing](https://github.com/NVIDIA/NeMo-text-processing)
|
127 |
+
- [tomaarsen/TTSTextNormalization](https://github.com/tomaarsen/TTSTextNormalization)
|