Spaces:
Running
Running
File size: 7,737 Bytes
f39233d 4b65a10 f39233d 4b65a10 f39233d 4b65a10 f39233d 4b65a10 f39233d 4b65a10 f39233d 5996317 f39233d 5996317 f39233d 5996317 f39233d 4b65a10 f39233d cab1108 4b65a10 f39233d 4b65a10 f39233d 4b65a10 f39233d cab1108 bc4be63 cab1108 f39233d cab1108 f39233d cab1108 f39233d 4b65a10 f39233d 4b65a10 f39233d 4b65a10 f39233d 4b65a10 f39233d 4b65a10 f39233d 4b65a10 f39233d 4b65a10 f39233d 4b65a10 f39233d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi
# Initialize Hugging Face API
api = HfApi()
# Constants
GGUF_TAG = "gguf"
CHUNK_SIZE = 1000
# Clickable links function
def clickable(x, which_one):
if x in ["Not Found", "Unknown"]:
return "Not Found"
if which_one == "models":
return f'<a target="_blank" href="https://huggingface.co/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'
else:
return f'<a target="_blank" href="https://huggingface.co/{which_one}/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'
# Fetch models and return a DataFrame with clickable links
def fetch_models():
models = api.list_models(filter=GGUF_TAG, full=True)
data = []
for model in models:
model_id = model.id if model.id else "Not Found"
author = model.author if model.author else "Unknown"
data.append({
"Model ID": model_id,
"Author Name": author,
"Downloads (30d)": model.downloads or 0,
"Likes": model.likes or 0,
"Created At": model.created_at.isoformat() if model.created_at else "N/A",
"Last Modified": model.last_modified.isoformat() if model.last_modified else "N/A",
})
df = pd.DataFrame(data)
# Apply clickable links to models and authors
df["Model ID"] = df["Model ID"].apply(lambda x: clickable(x, "models"))
df["Author Name"] = df["Author Name"].apply(lambda x: clickable(x, "models"))
return df
# Prepare authors DataFrame
def prepare_authors_df(models_df):
authors_df = models_df.copy()
# Extract the author name from the href in the clickable link
authors_df["Clean Author Name"] = authors_df["Author Name"].str.extract(r'href="https://huggingface\.co/(.*?)"')
grouped = authors_df.groupby("Clean Author Name").agg(
Models_Count=("Model ID", "count"),
Total_Downloads=("Downloads (30d)", "sum"),
Total_Likes=("Likes", "sum")
).reset_index()
grouped.rename(columns={"Clean Author Name": "Author Name"}, inplace=True)
grouped["Author Name"] = grouped["Author Name"].apply(lambda x: clickable(x, "models"))
return grouped.sort_values(by="Models_Count", ascending=False)
all_models_df = fetch_models().sort_values(by="Downloads (30d)", ascending=False)
authors_df = prepare_authors_df(all_models_df)
# Calculate totals
total_models_count = len(all_models_df)
total_downloads = all_models_df["Downloads (30d)"].sum()
total_likes = all_models_df["Likes"].sum()
def apply_model_filters(search_query, min_downloads, min_likes):
df = all_models_df.copy()
# Extract visible text for filtering purposes:
visible_model_id = df["Model ID"].str.extract(r'>(.*?)<')[0]
visible_author_name = df["Author Name"].str.extract(r'>(.*?)<')[0]
# Search filter
if search_query.strip():
mask = (visible_model_id.str.contains(search_query, case=False, na=False)) | \
(visible_author_name.str.contains(search_query, case=False, na=False))
df = df[mask]
# Minimum downloads filter
if min_downloads is not None and min_downloads > 0:
df = df[df["Downloads (30d)"] >= min_downloads]
# Minimum likes filter
if min_likes is not None and min_likes > 0:
df = df[df["Likes"] >= min_likes]
return df
def filter_models(search_query, min_downloads, min_likes):
filtered = apply_model_filters(search_query, min_downloads, min_likes)
return filtered.iloc[:CHUNK_SIZE], CHUNK_SIZE, filtered
def update_model_table(start_idx, filtered_df):
new_end = start_idx + CHUNK_SIZE
combined_df = filtered_df.iloc[:new_end].copy()
return combined_df, new_end
def apply_author_filters(search_query, min_author_downloads, min_author_likes):
df = authors_df.copy()
# Extract visible text for author filtering:
visible_author_name = df["Author Name"].str.extract(r'>(.*?)<')[0]
# Search filter for authors
if search_query.strip():
mask = visible_author_name.str.contains(search_query, case=False, na=False)
df = df[mask]
# Minimum total downloads filter
if min_author_downloads is not None and min_author_downloads > 0:
df = df[df["Total_Downloads"] >= min_author_downloads]
# Minimum total likes filter
if min_author_likes is not None and min_author_likes > 0:
df = df[df["Total_Likes"] >= min_author_likes]
return df
with gr.Blocks() as demo:
gr.Markdown(f"""
# 🚀GGUF Tracker🚀
Welcome to 🚀**GGUF Tracker**🚀, a live-updating leaderboard for all things GGUF on 🚀Hugging Face.
Stats refresh every hour, giving you the latest numbers.
By the way, I’m 🚀Richard Erkhov, and you can check out more of what I’m working on at my [🌟**github**](https://github.com/RichardErkhov),
[🌟**huggingface**](https://huggingface.co/RichardErkhov) or [🌟**erkhov.com**](https://erkhov.com). Go take a look—I think you’ll like what you find.
""")
gr.Markdown(f"""
# GGUF Models and Authors Leaderboard
**Total Models:** {total_models_count} | **Total Downloads (30d):** {total_downloads} | **Total Likes:** {total_likes}
""")
with gr.Tabs():
with gr.TabItem("Models"):
with gr.Row():
search_query = gr.Textbox(label="Search (by Model ID or Author Name)")
min_downloads = gr.Number(label="Min Downloads (30d)", value=0)
min_likes = gr.Number(label="Min Likes", value=0)
filter_button = gr.Button("Apply Filters")
model_table = gr.DataFrame(
value=all_models_df.iloc[:CHUNK_SIZE],
interactive=False,
label="GGUF Models (Click column headers to sort)",
wrap=True,
datatype=["markdown", "markdown", "number", "number", "str", "str"]
)
load_more_button = gr.Button("Load More Models")
# States
start_idx = gr.State(value=CHUNK_SIZE)
filtered_df_state = gr.State(value=all_models_df) # holds the currently filtered df
filter_button.click(
fn=filter_models,
inputs=[search_query, min_downloads, min_likes],
outputs=[model_table, start_idx, filtered_df_state]
)
load_more_button.click(fn=update_model_table, inputs=[start_idx, filtered_df_state], outputs=[model_table, start_idx])
with gr.TabItem("Authors"):
with gr.Row():
author_search_query = gr.Textbox(label="Search by Author Name")
min_author_downloads = gr.Number(label="Min Total Downloads", value=0)
min_author_likes = gr.Number(label="Min Total Likes", value=0)
author_filter_button = gr.Button("Apply Filters")
author_table = gr.DataFrame(
value=authors_df,
interactive=False,
label="Authors (Click column headers to sort)",
wrap=True,
datatype=["markdown", "number", "number", "number"]
)
def filter_authors(author_search_query, min_author_downloads, min_author_likes):
filtered_authors = apply_author_filters(author_search_query, min_author_downloads, min_author_likes)
return filtered_authors
author_filter_button.click(
fn=filter_authors,
inputs=[author_search_query, min_author_downloads, min_author_likes],
outputs=author_table
)
demo.launch()
|