File size: 7,737 Bytes
f39233d
 
 
 
 
 
 
 
 
 
 
 
 
4b65a10
 
f39233d
4b65a10
f39233d
4b65a10
f39233d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b65a10
f39233d
 
 
 
 
 
 
4b65a10
f39233d
5996317
f39233d
 
5996317
 
f39233d
5996317
f39233d
4b65a10
f39233d
 
 
 
 
cab1108
 
 
 
 
4b65a10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f39233d
4b65a10
f39233d
 
4b65a10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f39233d
cab1108
bc4be63
cab1108
 
 
 
 
 
f39233d
cab1108
 
 
f39233d
cab1108
f39233d
 
4b65a10
 
 
 
 
 
f39233d
 
4b65a10
 
f39233d
 
 
 
4b65a10
 
f39233d
4b65a10
f39233d
4b65a10
 
 
 
 
 
f39233d
 
4b65a10
 
 
 
 
 
 
f39233d
 
4b65a10
f39233d
4b65a10
 
 
 
 
 
 
 
 
 
 
f39233d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi

# Initialize Hugging Face API
api = HfApi()

# Constants
GGUF_TAG = "gguf"
CHUNK_SIZE = 1000

# Clickable links function
def clickable(x, which_one):
    if x in ["Not Found", "Unknown"]:
        return "Not Found"
    if which_one == "models":
        return f'<a target="_blank" href="https://huggingface.co/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'
    else:
        return f'<a target="_blank" href="https://huggingface.co/{which_one}/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'

# Fetch models and return a DataFrame with clickable links
def fetch_models():
    models = api.list_models(filter=GGUF_TAG, full=True)
    data = []
    for model in models:
        model_id = model.id if model.id else "Not Found"
        author = model.author if model.author else "Unknown"
        data.append({
            "Model ID": model_id,
            "Author Name": author,
            "Downloads (30d)": model.downloads or 0,
            "Likes": model.likes or 0,
            "Created At": model.created_at.isoformat() if model.created_at else "N/A",
            "Last Modified": model.last_modified.isoformat() if model.last_modified else "N/A",
        })
    df = pd.DataFrame(data)
    # Apply clickable links to models and authors
    df["Model ID"] = df["Model ID"].apply(lambda x: clickable(x, "models"))
    df["Author Name"] = df["Author Name"].apply(lambda x: clickable(x, "models"))
    return df

# Prepare authors DataFrame
def prepare_authors_df(models_df):
    authors_df = models_df.copy()
    # Extract the author name from the href in the clickable link
    authors_df["Clean Author Name"] = authors_df["Author Name"].str.extract(r'href="https://huggingface\.co/(.*?)"')

    grouped = authors_df.groupby("Clean Author Name").agg(
        Models_Count=("Model ID", "count"),
        Total_Downloads=("Downloads (30d)", "sum"),
        Total_Likes=("Likes", "sum")
    ).reset_index()

    grouped.rename(columns={"Clean Author Name": "Author Name"}, inplace=True)
    grouped["Author Name"] = grouped["Author Name"].apply(lambda x: clickable(x, "models"))
    return grouped.sort_values(by="Models_Count", ascending=False)

all_models_df = fetch_models().sort_values(by="Downloads (30d)", ascending=False)
authors_df = prepare_authors_df(all_models_df)

# Calculate totals
total_models_count = len(all_models_df)
total_downloads = all_models_df["Downloads (30d)"].sum()
total_likes = all_models_df["Likes"].sum()

def apply_model_filters(search_query, min_downloads, min_likes):
    df = all_models_df.copy()

    # Extract visible text for filtering purposes:
    visible_model_id = df["Model ID"].str.extract(r'>(.*?)<')[0]
    visible_author_name = df["Author Name"].str.extract(r'>(.*?)<')[0]

    # Search filter
    if search_query.strip():
        mask = (visible_model_id.str.contains(search_query, case=False, na=False)) | \
               (visible_author_name.str.contains(search_query, case=False, na=False))
        df = df[mask]

    # Minimum downloads filter
    if min_downloads is not None and min_downloads > 0:
        df = df[df["Downloads (30d)"] >= min_downloads]

    # Minimum likes filter
    if min_likes is not None and min_likes > 0:
        df = df[df["Likes"] >= min_likes]

    return df

def filter_models(search_query, min_downloads, min_likes):
    filtered = apply_model_filters(search_query, min_downloads, min_likes)
    return filtered.iloc[:CHUNK_SIZE], CHUNK_SIZE, filtered

def update_model_table(start_idx, filtered_df):
    new_end = start_idx + CHUNK_SIZE
    combined_df = filtered_df.iloc[:new_end].copy()
    return combined_df, new_end

def apply_author_filters(search_query, min_author_downloads, min_author_likes):
    df = authors_df.copy()

    # Extract visible text for author filtering:
    visible_author_name = df["Author Name"].str.extract(r'>(.*?)<')[0]

    # Search filter for authors
    if search_query.strip():
        mask = visible_author_name.str.contains(search_query, case=False, na=False)
        df = df[mask]

    # Minimum total downloads filter
    if min_author_downloads is not None and min_author_downloads > 0:
        df = df[df["Total_Downloads"] >= min_author_downloads]

    # Minimum total likes filter
    if min_author_likes is not None and min_author_likes > 0:
        df = df[df["Total_Likes"] >= min_author_likes]

    return df


with gr.Blocks() as demo:
    gr.Markdown(f"""
    # 🚀GGUF Tracker🚀
    Welcome to 🚀**GGUF Tracker**🚀, a live-updating leaderboard for all things GGUF on 🚀Hugging Face.  
    Stats refresh every hour, giving you the latest numbers.

    By the way, I’m 🚀Richard Erkhov, and you can check out more of what I’m working on at my [🌟**github**](https://github.com/RichardErkhov), 
    [🌟**huggingface**](https://huggingface.co/RichardErkhov) or [🌟**erkhov.com**](https://erkhov.com). Go take a look—I think you’ll like what you find.
    """)

    gr.Markdown(f"""
    # GGUF Models and Authors Leaderboard
    **Total Models:** {total_models_count} | **Total Downloads (30d):** {total_downloads} | **Total Likes:** {total_likes}
    """)

    with gr.Tabs():
        with gr.TabItem("Models"):
            with gr.Row():
                search_query = gr.Textbox(label="Search (by Model ID or Author Name)")
                min_downloads = gr.Number(label="Min Downloads (30d)", value=0)
                min_likes = gr.Number(label="Min Likes", value=0)

            filter_button = gr.Button("Apply Filters")
            model_table = gr.DataFrame(
                value=all_models_df.iloc[:CHUNK_SIZE],
                interactive=False,
                label="GGUF Models (Click column headers to sort)",
                wrap=True,
                datatype=["markdown", "markdown", "number", "number", "str", "str"]
            )
            load_more_button = gr.Button("Load More Models")
            
            # States
            start_idx = gr.State(value=CHUNK_SIZE)
            filtered_df_state = gr.State(value=all_models_df)  # holds the currently filtered df

            filter_button.click(
                fn=filter_models,
                inputs=[search_query, min_downloads, min_likes],
                outputs=[model_table, start_idx, filtered_df_state]
            )
            load_more_button.click(fn=update_model_table, inputs=[start_idx, filtered_df_state], outputs=[model_table, start_idx])

        with gr.TabItem("Authors"):
            with gr.Row():
                author_search_query = gr.Textbox(label="Search by Author Name")
                min_author_downloads = gr.Number(label="Min Total Downloads", value=0)
                min_author_likes = gr.Number(label="Min Total Likes", value=0)

            author_filter_button = gr.Button("Apply Filters")
            author_table = gr.DataFrame(
                value=authors_df,
                interactive=False,
                label="Authors (Click column headers to sort)",
                wrap=True,
                datatype=["markdown", "number", "number", "number"]
            )

            def filter_authors(author_search_query, min_author_downloads, min_author_likes):
                filtered_authors = apply_author_filters(author_search_query, min_author_downloads, min_author_likes)
                return filtered_authors

            author_filter_button.click(
                fn=filter_authors,
                inputs=[author_search_query, min_author_downloads, min_author_likes],
                outputs=author_table
            )

    demo.launch()