Spaces:
Running
Running
RichardErkhov
commited on
Commit
•
b71a955
1
Parent(s):
22dbc6c
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
-
import
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
TIME_URL = "https://erkhov.com/huggingspace_time"
|
8 |
-
CHUNK_SIZE = 1000
|
9 |
-
|
10 |
-
def fetch_data():
|
11 |
-
response = requests.get(DATA_URL)
|
12 |
-
data = response.json()
|
13 |
-
return data
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
|
|
|
19 |
def clickable(x, which_one):
|
20 |
if x in ["Not Found", "Unknown"]:
|
21 |
return "Not Found"
|
@@ -24,40 +18,55 @@ def clickable(x, which_one):
|
|
24 |
else:
|
25 |
return f'<a target="_blank" href="https://huggingface.co/{which_one}/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
visible_model_id = df["Model ID"].str.extract(r'>(.*?)<')[0]
|
62 |
visible_author_name = df["Author Name"].str.extract(r'>(.*?)<')[0]
|
63 |
|
@@ -77,8 +86,8 @@ def apply_model_filters(models_df, search_query, min_downloads, min_likes):
|
|
77 |
|
78 |
return df
|
79 |
|
80 |
-
def filter_models(
|
81 |
-
filtered = apply_model_filters(
|
82 |
return filtered.iloc[:CHUNK_SIZE], CHUNK_SIZE, filtered
|
83 |
|
84 |
def update_model_table(start_idx, filtered_df):
|
@@ -86,7 +95,7 @@ def update_model_table(start_idx, filtered_df):
|
|
86 |
combined_df = filtered_df.iloc[:new_end].copy()
|
87 |
return combined_df, new_end
|
88 |
|
89 |
-
def apply_author_filters(
|
90 |
df = authors_df.copy()
|
91 |
|
92 |
# Extract visible text for author filtering:
|
@@ -107,24 +116,12 @@ def apply_author_filters(authors_df, search_query, min_author_downloads, min_aut
|
|
107 |
|
108 |
return df
|
109 |
|
110 |
-
def filter_authors(authors_df, author_search_query, min_author_downloads, min_author_likes):
|
111 |
-
filtered_authors = apply_author_filters(authors_df, author_search_query, min_author_downloads, min_author_likes)
|
112 |
-
return filtered_authors
|
113 |
-
|
114 |
-
# Fetch data once at start
|
115 |
-
last_updated = fetch_time()
|
116 |
-
data = fetch_data()
|
117 |
-
all_models_df, authors_df = create_dataframes(data)
|
118 |
-
|
119 |
-
total_models_count = data["total_models"]
|
120 |
-
total_downloads = data["total_downloads"]
|
121 |
-
total_likes = all_models_df["Likes"].sum() if "Likes" in all_models_df.columns else 0
|
122 |
|
123 |
with gr.Blocks() as demo:
|
124 |
gr.Markdown(f"""
|
125 |
# 🚀GGUF Tracker🚀
|
126 |
Welcome to 🚀**GGUF Tracker**🚀, a live-updating leaderboard for all things GGUF on 🚀Hugging Face.
|
127 |
-
|
128 |
|
129 |
By the way, I’m 🚀Richard Erkhov, and you can check out more of what I’m working on at my [🌟**github**](https://github.com/RichardErkhov),
|
130 |
[🌟**huggingface**](https://huggingface.co/RichardErkhov) or [🌟**erkhov.com**](https://erkhov.com). Go take a look—I think you’ll like what you find.
|
@@ -132,8 +129,7 @@ with gr.Blocks() as demo:
|
|
132 |
|
133 |
gr.Markdown(f"""
|
134 |
# GGUF Models and Authors Leaderboard
|
135 |
-
**Total Models:** {total_models_count} | **Total Downloads (30d):** {total_downloads} | **Total Likes:** {total_likes}
|
136 |
-
**Last Updated:** {last_updated}
|
137 |
""")
|
138 |
|
139 |
with gr.Tabs():
|
@@ -155,11 +151,11 @@ with gr.Blocks() as demo:
|
|
155 |
|
156 |
# States
|
157 |
start_idx = gr.State(value=CHUNK_SIZE)
|
158 |
-
filtered_df_state = gr.State(value=all_models_df)
|
159 |
|
160 |
filter_button.click(
|
161 |
fn=filter_models,
|
162 |
-
inputs=[
|
163 |
outputs=[model_table, start_idx, filtered_df_state]
|
164 |
)
|
165 |
load_more_button.click(fn=update_model_table, inputs=[start_idx, filtered_df_state], outputs=[model_table, start_idx])
|
@@ -179,10 +175,14 @@ with gr.Blocks() as demo:
|
|
179 |
datatype=["markdown", "number", "number", "number"]
|
180 |
)
|
181 |
|
|
|
|
|
|
|
|
|
182 |
author_filter_button.click(
|
183 |
fn=filter_authors,
|
184 |
-
inputs=[
|
185 |
outputs=author_table
|
186 |
)
|
187 |
|
188 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
+
from huggingface_hub import HfApi
|
4 |
|
5 |
+
# Initialize Hugging Face API
|
6 |
+
api = HfApi()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Constants
|
9 |
+
GGUF_TAG = "gguf"
|
10 |
+
CHUNK_SIZE = 1000
|
11 |
|
12 |
+
# Clickable links function
|
13 |
def clickable(x, which_one):
|
14 |
if x in ["Not Found", "Unknown"]:
|
15 |
return "Not Found"
|
|
|
18 |
else:
|
19 |
return f'<a target="_blank" href="https://huggingface.co/{which_one}/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'
|
20 |
|
21 |
+
# Fetch models and return a DataFrame with clickable links
|
22 |
+
def fetch_models():
|
23 |
+
models = api.list_models(filter=GGUF_TAG, full=True)
|
24 |
+
data = []
|
25 |
+
for model in models:
|
26 |
+
model_id = model.id if model.id else "Not Found"
|
27 |
+
author = model.author if model.author else "Unknown"
|
28 |
+
data.append({
|
29 |
+
"Model ID": model_id,
|
30 |
+
"Author Name": author,
|
31 |
+
"Downloads (30d)": model.downloads or 0,
|
32 |
+
"Likes": model.likes or 0,
|
33 |
+
"Created At": model.created_at.isoformat() if model.created_at else "N/A",
|
34 |
+
"Last Modified": model.last_modified.isoformat() if model.last_modified else "N/A",
|
35 |
+
})
|
36 |
+
df = pd.DataFrame(data)
|
37 |
+
# Apply clickable links to models and authors
|
38 |
+
df["Model ID"] = df["Model ID"].apply(lambda x: clickable(x, "models"))
|
39 |
+
df["Author Name"] = df["Author Name"].apply(lambda x: clickable(x, "models"))
|
40 |
+
return df
|
41 |
+
|
42 |
+
# Prepare authors DataFrame
|
43 |
+
def prepare_authors_df(models_df):
|
44 |
+
authors_df = models_df.copy()
|
45 |
+
# Extract the author name from the href in the clickable link
|
46 |
+
authors_df["Clean Author Name"] = authors_df["Author Name"].str.extract(r'href="https://huggingface\.co/(.*?)"')
|
47 |
+
|
48 |
+
grouped = authors_df.groupby("Clean Author Name").agg(
|
49 |
+
Models_Count=("Model ID", "count"),
|
50 |
+
Total_Downloads=("Downloads (30d)", "sum"),
|
51 |
+
Total_Likes=("Likes", "sum")
|
52 |
+
).reset_index()
|
53 |
+
|
54 |
+
grouped.rename(columns={"Clean Author Name": "Author Name"}, inplace=True)
|
55 |
+
grouped["Author Name"] = grouped["Author Name"].apply(lambda x: clickable(x, "models"))
|
56 |
+
return grouped.sort_values(by="Models_Count", ascending=False)
|
57 |
+
|
58 |
+
all_models_df = fetch_models().sort_values(by="Downloads (30d)", ascending=False)
|
59 |
+
authors_df = prepare_authors_df(all_models_df)
|
60 |
+
|
61 |
+
# Calculate totals
|
62 |
+
total_models_count = len(all_models_df)
|
63 |
+
total_downloads = all_models_df["Downloads (30d)"].sum()
|
64 |
+
total_likes = all_models_df["Likes"].sum()
|
65 |
+
|
66 |
+
def apply_model_filters(search_query, min_downloads, min_likes):
|
67 |
+
df = all_models_df.copy()
|
68 |
+
|
69 |
+
# Extract visible text for filtering purposes:
|
70 |
visible_model_id = df["Model ID"].str.extract(r'>(.*?)<')[0]
|
71 |
visible_author_name = df["Author Name"].str.extract(r'>(.*?)<')[0]
|
72 |
|
|
|
86 |
|
87 |
return df
|
88 |
|
89 |
+
def filter_models(search_query, min_downloads, min_likes):
|
90 |
+
filtered = apply_model_filters(search_query, min_downloads, min_likes)
|
91 |
return filtered.iloc[:CHUNK_SIZE], CHUNK_SIZE, filtered
|
92 |
|
93 |
def update_model_table(start_idx, filtered_df):
|
|
|
95 |
combined_df = filtered_df.iloc[:new_end].copy()
|
96 |
return combined_df, new_end
|
97 |
|
98 |
+
def apply_author_filters(search_query, min_author_downloads, min_author_likes):
|
99 |
df = authors_df.copy()
|
100 |
|
101 |
# Extract visible text for author filtering:
|
|
|
116 |
|
117 |
return df
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
with gr.Blocks() as demo:
|
121 |
gr.Markdown(f"""
|
122 |
# 🚀GGUF Tracker🚀
|
123 |
Welcome to 🚀**GGUF Tracker**🚀, a live-updating leaderboard for all things GGUF on 🚀Hugging Face.
|
124 |
+
Stats refresh every hour, giving you the latest numbers.
|
125 |
|
126 |
By the way, I’m 🚀Richard Erkhov, and you can check out more of what I’m working on at my [🌟**github**](https://github.com/RichardErkhov),
|
127 |
[🌟**huggingface**](https://huggingface.co/RichardErkhov) or [🌟**erkhov.com**](https://erkhov.com). Go take a look—I think you’ll like what you find.
|
|
|
129 |
|
130 |
gr.Markdown(f"""
|
131 |
# GGUF Models and Authors Leaderboard
|
132 |
+
**Total Models:** {total_models_count} | **Total Downloads (30d):** {total_downloads} | **Total Likes:** {total_likes}
|
|
|
133 |
""")
|
134 |
|
135 |
with gr.Tabs():
|
|
|
151 |
|
152 |
# States
|
153 |
start_idx = gr.State(value=CHUNK_SIZE)
|
154 |
+
filtered_df_state = gr.State(value=all_models_df) # holds the currently filtered df
|
155 |
|
156 |
filter_button.click(
|
157 |
fn=filter_models,
|
158 |
+
inputs=[search_query, min_downloads, min_likes],
|
159 |
outputs=[model_table, start_idx, filtered_df_state]
|
160 |
)
|
161 |
load_more_button.click(fn=update_model_table, inputs=[start_idx, filtered_df_state], outputs=[model_table, start_idx])
|
|
|
175 |
datatype=["markdown", "number", "number", "number"]
|
176 |
)
|
177 |
|
178 |
+
def filter_authors(author_search_query, min_author_downloads, min_author_likes):
|
179 |
+
filtered_authors = apply_author_filters(author_search_query, min_author_downloads, min_author_likes)
|
180 |
+
return filtered_authors
|
181 |
+
|
182 |
author_filter_button.click(
|
183 |
fn=filter_authors,
|
184 |
+
inputs=[author_search_query, min_author_downloads, min_author_likes],
|
185 |
outputs=author_table
|
186 |
)
|
187 |
|
188 |
+
demo.launch()
|