import gradio as gr
import pandas as pd
import requests
CHUNK_SIZE = 1000
DATA_URL = "https://erkhov.com/huggingspace_data"
TIME_URL = "https://erkhov.com/huggingspace_time"
def fetch_time():
response = requests.get(TIME_URL)
return response.text.strip() # assume the endpoint returns a raw timestamp or numeric value as string
def fetch_data():
response = requests.get(DATA_URL)
data = response.json()
return data
def clickable(x, which_one):
if x in ["Not Found", "Unknown"]:
return "Not Found"
if which_one == "models":
return f'{x}'
else:
return f'{x}'
def create_dataframes(data):
models_data = data["models"]
authors_data = data["authors"]
# Create DataFrame for models
models_df = pd.DataFrame(models_data)
models_df.rename(columns={
"id": "Model ID",
"author": "Author Name",
"downloads": "Downloads (30d)",
"likes": "Likes",
"created_at": "Created At",
"last_modified": "Last Modified"
}, inplace=True)
models_df["Model ID"] = models_df["Model ID"].apply(lambda x: clickable(x, "models"))
models_df["Author Name"] = models_df["Author Name"].apply(lambda x: clickable(x, "models"))
models_df = models_df.sort_values(by="Downloads (30d)", ascending=False)
# Create DataFrame for authors
authors_df = pd.DataFrame(authors_data)
authors_df.rename(columns={
"author": "Author Name",
"models_count": "Models_Count",
"downloads": "Total_Downloads",
"likes": "Total_Likes"
}, inplace=True)
authors_df["Author Name"] = authors_df["Author Name"].apply(lambda x: clickable(x, "models"))
authors_df = authors_df.sort_values(by="Models_Count", ascending=False)
return models_df, authors_df
def apply_model_filters(models_df, search_query, min_downloads, min_likes):
df = models_df.copy()
# Extract visible text for filtering
visible_model_id = df["Model ID"].str.extract(r'>(.*?)<')[0]
visible_author_name = df["Author Name"].str.extract(r'>(.*?)<')[0]
# Search filter
if search_query.strip():
mask = (visible_model_id.str.contains(search_query, case=False, na=False)) | \
(visible_author_name.str.contains(search_query, case=False, na=False))
df = df[mask]
# Minimum downloads filter
if min_downloads is not None and min_downloads > 0:
df = df[df["Downloads (30d)"] >= min_downloads]
# Minimum likes filter
if min_likes is not None and min_likes > 0:
df = df[df["Likes"] >= min_likes]
return df
def filter_models(models_df, search_query, min_downloads, min_likes):
filtered = apply_model_filters(models_df, search_query, min_downloads, min_likes)
return filtered.iloc[:CHUNK_SIZE], CHUNK_SIZE, filtered
def update_model_table(start_idx, filtered_df):
new_end = start_idx + CHUNK_SIZE
combined_df = filtered_df.iloc[:new_end].copy()
return combined_df, new_end
def apply_author_filters(authors_df, search_query, min_author_downloads, min_author_likes):
df = authors_df.copy()
# Extract visible text for author filtering:
visible_author_name = df["Author Name"].str.extract(r'>(.*?)<')[0]
# Search filter for authors
if search_query.strip():
mask = visible_author_name.str.contains(search_query, case=False, na=False)
df = df[mask]
# Minimum total downloads filter
if min_author_downloads is not None and min_author_downloads > 0:
df = df[df["Total_Downloads"] >= min_author_downloads]
# Minimum total likes filter
if min_author_likes is not None and min_author_likes > 0:
df = df[df["Total_Likes"] >= min_author_likes]
return df
def filter_authors(authors_df, author_search_query, min_author_downloads, min_author_likes):
filtered_authors = apply_author_filters(authors_df, author_search_query, min_author_downloads, min_author_likes)
return filtered_authors
def refresh_data(last_time, models_df_state, authors_df_state, stats_markdown, model_table, author_table):
# Check if time changed
current_time = fetch_time()
if current_time != last_time and current_time != 0:
# Time changed, re-fetch data
data = fetch_data()
models_df, authors_df = create_dataframes(data)
total_models_count = data["total_models"]
total_downloads = data["total_downloads"]
total_likes = models_df["Likes"].sum() if "Likes" in models_df.columns else 0
# Update stats markdown
new_stats_markdown = f"""
# GGUF Models and Authors Leaderboard
**Total Models:** {total_models_count} | **Total Downloads (30d):** {total_downloads} | **Total Likes:** {total_likes}
**Last Updated:** {current_time}
"""
# Update states
return current_time, models_df, authors_df, gr.update(value=new_stats_markdown), gr.update(value=models_df.iloc[:CHUNK_SIZE]), gr.update(value=authors_df)
else:
# No change
return last_time, models_df_state, authors_df_state, stats_markdown, model_table, author_table
# Initial fetch
initial_time = fetch_time()
data = fetch_data()
all_models_df, authors_df = create_dataframes(data)
total_models_count = data["total_models"]
total_downloads = data["total_downloads"]
total_likes = all_models_df["Likes"].sum() if "Likes" in all_models_df.columns else 0
initial_stats_markdown = f"""
# GGUF Models and Authors Leaderboard
**Total Models:** {total_models_count} | **Total Downloads (30d):** {total_downloads} | **Total Likes:** {total_likes}
**Last Updated:** {initial_time}
"""
with gr.Blocks() as demo:
gr.Markdown(f"""
# 🚀GGUF Tracker🚀
Welcome to 🚀**GGUF Tracker**🚀, a live-updating leaderboard for all things GGUF on 🚀Hugging Face.
Stats refresh every hour on the backend, but this interface checks every 5 minutes for updates.
By the way, I’m 🚀Richard Erkhov, and you can check out more of what I’m working on at my [🌟**github**](https://github.com/RichardErkhov),
[🌟**huggingface**](https://huggingface.co/RichardErkhov) or [🌟**erkhov.com**](https://erkhov.com). Go take a look—I think you’ll like what you find.
""")
stats_markdown = gr.Markdown(initial_stats_markdown)
with gr.Tabs():
with gr.TabItem("Models"):
with gr.Row():
search_query = gr.Textbox(label="Search (by Model ID or Author Name)")
min_downloads = gr.Number(label="Min Downloads (30d)", value=0)
min_likes = gr.Number(label="Min Likes", value=0)
filter_button = gr.Button("Apply Filters")
model_table = gr.DataFrame(
value=all_models_df.iloc[:CHUNK_SIZE],
interactive=False,
label="GGUF Models (Click column headers to sort)",
wrap=True,
datatype=["markdown", "markdown", "number", "number", "str", "str"]
)
load_more_button = gr.Button("Load More Models")
# States for models
start_idx = gr.State(value=CHUNK_SIZE)
filtered_df_state = gr.State(value=all_models_df)
filter_button.click(
fn=filter_models,
inputs=[filtered_df_state, search_query, min_downloads, min_likes],
outputs=[model_table, start_idx, filtered_df_state]
)
load_more_button.click(fn=update_model_table, inputs=[start_idx, filtered_df_state], outputs=[model_table, start_idx])
with gr.TabItem("Authors"):
with gr.Row():
author_search_query = gr.Textbox(label="Search by Author Name")
min_author_downloads = gr.Number(label="Min Total Downloads", value=0)
min_author_likes = gr.Number(label="Min Total Likes", value=0)
author_filter_button = gr.Button("Apply Filters")
author_table = gr.DataFrame(
value=authors_df,
interactive=False,
label="Authors (Click column headers to sort)",
wrap=True,
datatype=["markdown", "number", "number", "number"]
)
author_filter_button.click(
fn=filter_authors,
inputs=[authors_df, author_search_query, min_author_downloads, min_author_likes],
outputs=author_table
)
# States for refresh
last_hf_time_state = gr.State(value=initial_time)
models_df_state = gr.State(value=all_models_df)
authors_df_state = gr.State(value=authors_df)
# Timer to check every 5 minutes = 300 seconds
timer = gr.Timer(interval=300, fn=refresh_data, inputs=[
last_hf_time_state,
models_df_state,
authors_df_state,
stats_markdown,
model_table,
author_table
], outputs=[
last_hf_time_state,
models_df_state,
authors_df_state,
stats_markdown,
model_table,
author_table
])
demo.launch()