Diff_Text_pub / app.py
Rick-Xu315
debug
b6ab13f
import gradio as gr
import difflib
from io import BytesIO
import matplotlib.pyplot as plt
import numpy as np
import gradio as gr
import difflib
def word_lcs(text1, text2):
words1 = text1.split()
words2 = text2.split()
m, n = len(words1), len(words2)
# Initialize a 2D array to store the length of word-level LCS
dp = [[0] * (n + 1) for _ in range(m + 1)]
# Fill the dp array using bottom-up dynamic programming
for i in range(1, m + 1):
for j in range(1, n + 1):
if words1[i - 1] == words2[j - 1]:
dp[i][j] = dp[i - 1][j - 1] + 1
else:
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
# Reconstruct the word-level LCS from the dp array
i, j = m, n
word_lcs = []
while i > 0 and j > 0:
if words1[i - 1] == words2[j - 1]:
word_lcs.append(words1[i - 1])
i -= 1
j -= 1
elif dp[i - 1][j] > dp[i][j - 1]:
i -= 1
else:
j -= 1
# Reverse the word-level LCS to get the correct order
word_lcs = word_lcs[::-1]
result=[]
for word in text2.split():
if word in word_lcs:
result.append((word+" ","-"))
word_lcs.remove(word)
else:
result.append((word,"+"))
#result=[(word+" ",None) for word in word_lcs]
return result
#定义处理函数
# 定义处理函数 f
def process(text1, text2,function):
# 这里替换成你的处理逻辑,生成图片的代码
# 示例:使用Matplotlib生成一个简单的图像
if function=="naive":
d = difflib.Differ()
return [
(token[2:], token[0] if token[0] != " " else None)
for token in d.compare(text1, text2)
]
else:
return(word_lcs(text1,text2))
# 创建 Gradio 界面
iface = gr.Interface(
fn=process, # 此处的 fn 将在运行时动态设置
inputs=[
gr.Textbox(label="Origin Text",value="The quick brown fox jumped over the lazy dogs.",lines=3),
gr.Textbox(label="Edited Text",value="The fast brown fox jumps over lazy dogs.",lines=3),
gr.Radio(["naive", "Largest Common Subsequence"], label="Select Function")
],
outputs=gr.HighlightedText(
label="Diff",
combine_adjacent=True,
show_legend=True,
color_map={"+": "red", "-": "green"}),
theme=gr.themes.Base()
)
# 设置动态函数选择
# 启动 Gradio 应用
iface.launch(share=True)