|
__all__ = ['learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf'] |
|
|
|
from fastai.vision.all import * |
|
import gradio as gr |
|
|
|
learn = load_learner('architecturemodel.pkl') |
|
|
|
categories = ('Achaemenid architecture', |
|
'American Foursquare architecture', |
|
'American craftsman style', |
|
'Ancient Egyptian architecture', |
|
'Art Deco architecture', |
|
'Art Nouveau architecture', |
|
'Baroque architecture', |
|
'Bauhaus architecture', |
|
'Beaux-Arts architecture', |
|
'Byzantine architecture', |
|
'Chicago school architecture', |
|
'Colonial architecture', |
|
'Deconstructivism', |
|
'Edwardian architecture', |
|
'Georgian architecture', |
|
'Gothic architecture', |
|
'Greek Revival architecture', |
|
'International style', |
|
'Novelty architecture', |
|
'Palladian architecture', |
|
'Postmodern architecture', |
|
'Queen Anne architecture', |
|
'Romanesque architecture', |
|
'Russian Revival architecture', |
|
'Tudor Revival architecture') |
|
|
|
def classify_image(img): |
|
pred,idx,probs = learn.predict(img) |
|
return dict(zip(categories, map(float,probs))) |
|
|
|
image = gr.inputs.Image(shape=(192, 192)) |
|
label = gr.outputs.Label() |
|
examples = ['bigben.jpeg','pyramid.jpeg','robiehouse.jpeg'] |
|
|
|
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) |
|
intf.launch(inline=False) |