Spaces:
Running
Running
initial commit
Browse files- .env +4 -0
- Dockerfile +16 -0
- app.py +163 -0
- requirements.txt +99 -0
.env
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
USER_AGENT='myagent'
|
2 |
+
GROQ_API_KEY="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"
|
3 |
+
PINECONE_API_KEY="ca8e6a33-7355-453f-ad4b-80c8a1c6a9c7"
|
4 |
+
SECRET_KEY="b0*1x^y@9$)w%v+k=p!8xp@4bkt37s&b8+uf%1=mh+v1=@ybsh"
|
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# you will also find guides on how best to write your Dockerfile
|
3 |
+
|
4 |
+
FROM python:3.9
|
5 |
+
|
6 |
+
RUN useradd -m -u 1000 user
|
7 |
+
USER user
|
8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
9 |
+
|
10 |
+
WORKDIR /app
|
11 |
+
|
12 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
14 |
+
|
15 |
+
COPY --chown=user . /app
|
16 |
+
CMD ["gunicorn", "-b", "0.0.0.0:7860" , "main:app"]
|
app.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
load_dotenv(".env")
|
4 |
+
|
5 |
+
os.environ['USER_AGENT'] = os.getenv("USER_AGENT")
|
6 |
+
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
|
7 |
+
os.environ["TOKENIZERS_PARALLELISM"]='true'
|
8 |
+
|
9 |
+
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
|
10 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
11 |
+
from langchain_community.chat_message_histories import ChatMessageHistory
|
12 |
+
from langchain_community.document_loaders import WebBaseLoader
|
13 |
+
from langchain_core.chat_history import BaseChatMessageHistory
|
14 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
15 |
+
from langchain_core.runnables.history import RunnableWithMessageHistory
|
16 |
+
|
17 |
+
from pinecone import Pinecone
|
18 |
+
from pinecone_text.sparse import BM25Encoder
|
19 |
+
|
20 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
21 |
+
from langchain_community.retrievers import PineconeHybridSearchRetriever
|
22 |
+
|
23 |
+
from langchain_groq import ChatGroq
|
24 |
+
|
25 |
+
from flask import Flask, request
|
26 |
+
from flask_cors import CORS
|
27 |
+
from flask_limiter import Limiter
|
28 |
+
from flask_limiter.util import get_remote_address
|
29 |
+
from flask_socketio import SocketIO, emit
|
30 |
+
|
31 |
+
app = Flask(__name__)
|
32 |
+
CORS(app)
|
33 |
+
socketio = SocketIO(app, cors_allowed_origins="*")
|
34 |
+
app.config['SESSION_COOKIE_SECURE'] = True # Use HTTPS
|
35 |
+
app.config['SESSION_COOKIE_HTTPONLY'] = True
|
36 |
+
app.config['SESSION_COOKIE_SAMESITE'] = 'Lax'
|
37 |
+
app.config['SECRET_KEY'] = os.getenv('SECRET_KEY')
|
38 |
+
|
39 |
+
try:
|
40 |
+
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
|
41 |
+
index_name = "traveler-demo-website-vectorstore"
|
42 |
+
# connect to index
|
43 |
+
pinecone_index = pc.Index(index_name)
|
44 |
+
except:
|
45 |
+
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
|
46 |
+
index_name = "traveler-demo-website-vectorstore"
|
47 |
+
# connect to index
|
48 |
+
pinecone_index = pc.Index(index_name)
|
49 |
+
|
50 |
+
bm25 = BM25Encoder().load("bm25_traveler_website.json")
|
51 |
+
|
52 |
+
embed_model = HuggingFaceEmbeddings(model_name="Alibaba-NLP/gte-large-en-v1.5", model_kwargs={"trust_remote_code":True})
|
53 |
+
|
54 |
+
retriever = PineconeHybridSearchRetriever(
|
55 |
+
embeddings=embed_model,
|
56 |
+
sparse_encoder=bm25,
|
57 |
+
index=pinecone_index,
|
58 |
+
top_k=20,
|
59 |
+
alpha=0.5,
|
60 |
+
)
|
61 |
+
|
62 |
+
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.1, max_tokens=1024, max_retries=2)
|
63 |
+
|
64 |
+
### Contextualize question ###
|
65 |
+
contextualize_q_system_prompt = """Given a chat history and the latest user question \
|
66 |
+
which might reference context in the chat history, formulate a standalone question \
|
67 |
+
which can be understood without the chat history. Do NOT answer the question, \
|
68 |
+
just reformulate it if needed and otherwise return it as is.
|
69 |
+
"""
|
70 |
+
contextualize_q_prompt = ChatPromptTemplate.from_messages(
|
71 |
+
[
|
72 |
+
("system", contextualize_q_system_prompt),
|
73 |
+
MessagesPlaceholder("chat_history"),
|
74 |
+
("human", "{input}")
|
75 |
+
]
|
76 |
+
)
|
77 |
+
|
78 |
+
history_aware_retriever = create_history_aware_retriever(
|
79 |
+
llm, retriever, contextualize_q_prompt
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
+
qa_system_prompt = """You are a highly skilled information retrieval assistant. Use the following pieces of retrieved context to answer the question. \
|
84 |
+
Provide links to sources provided in the answer. \
|
85 |
+
If you don't know the answer, just say that you don't know. \
|
86 |
+
Do not give extra long answers. \
|
87 |
+
When responding to queries, your responses should be comprehensive and well-organized. For each response: \
|
88 |
+
|
89 |
+
1. Provide Clear Answers \
|
90 |
+
|
91 |
+
2. Include Detailed References: \
|
92 |
+
- Include links to sources and any links or sites where there is a mentioned in the answer.
|
93 |
+
- Links to Sources: Provide URLs to credible sources where users can verify the information or explore further. \
|
94 |
+
- Downloadable Materials: Include links to any relevant downloadable resources if applicable. \
|
95 |
+
- Reference Sites: Mention specific websites or platforms that offer additional information. \
|
96 |
+
|
97 |
+
3. Formatting for Readability: \
|
98 |
+
- Bullet Points or Lists: Where applicable, use bullet points or numbered lists to present information clearly. \
|
99 |
+
- Emphasize Important Information: Use bold or italics to highlight key details. \
|
100 |
+
|
101 |
+
4. Organize Content Logically \
|
102 |
+
|
103 |
+
Do not include anything about context in the answer. \
|
104 |
+
|
105 |
+
{context}
|
106 |
+
"""
|
107 |
+
qa_prompt = ChatPromptTemplate.from_messages(
|
108 |
+
[
|
109 |
+
("system", qa_system_prompt),
|
110 |
+
MessagesPlaceholder("chat_history"),
|
111 |
+
("human", "{input}")
|
112 |
+
]
|
113 |
+
)
|
114 |
+
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
|
115 |
+
|
116 |
+
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
|
117 |
+
|
118 |
+
### Statefully manage chat history ###
|
119 |
+
store = {}
|
120 |
+
|
121 |
+
def clean_temporary_data():
|
122 |
+
store = {}
|
123 |
+
|
124 |
+
def get_session_history(session_id: str) -> BaseChatMessageHistory:
|
125 |
+
if session_id not in store:
|
126 |
+
store[session_id] = ChatMessageHistory()
|
127 |
+
return store[session_id]
|
128 |
+
|
129 |
+
|
130 |
+
conversational_rag_chain = RunnableWithMessageHistory(
|
131 |
+
rag_chain,
|
132 |
+
get_session_history,
|
133 |
+
input_messages_key="input",
|
134 |
+
history_messages_key="chat_history",
|
135 |
+
output_messages_key="answer",
|
136 |
+
)
|
137 |
+
|
138 |
+
# Stream response to client
|
139 |
+
@socketio.on('message')
|
140 |
+
def handle_message(data):
|
141 |
+
question = data.get('question')
|
142 |
+
session_id = data.get('session_id', 'abc123')
|
143 |
+
chain = conversational_rag_chain.pick("answer")
|
144 |
+
|
145 |
+
try:
|
146 |
+
for chunk in conversational_rag_chain.stream(
|
147 |
+
{"input": question},
|
148 |
+
config={
|
149 |
+
"configurable": {"session_id": "abc123"}
|
150 |
+
},
|
151 |
+
):
|
152 |
+
emit('response', chunk, room=request.sid)
|
153 |
+
except:
|
154 |
+
for chunk in conversational_rag_chain.stream(
|
155 |
+
{"input": question},
|
156 |
+
config={
|
157 |
+
"configurable": {"session_id": "abc123"}
|
158 |
+
},
|
159 |
+
):
|
160 |
+
emit('response', chunk, room=request.sid)
|
161 |
+
|
162 |
+
if __name__ == '__main__':
|
163 |
+
socketio.run(app, debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiohttp==3.9.5
|
2 |
+
aiosignal==1.3.1
|
3 |
+
annotated-types==0.7.0
|
4 |
+
anyio==4.4.0
|
5 |
+
async-timeout==4.0.3
|
6 |
+
attrs==23.2.0
|
7 |
+
bidict==0.23.1
|
8 |
+
blinker==1.8.2
|
9 |
+
certifi==2024.7.4
|
10 |
+
charset-normalizer==3.3.2
|
11 |
+
click==8.1.7
|
12 |
+
dataclasses-json==0.6.7
|
13 |
+
distro==1.9.0
|
14 |
+
exceptiongroup==1.2.2
|
15 |
+
filelock==3.15.4
|
16 |
+
flask==3.0.3
|
17 |
+
Flask-Cors==4.0.1
|
18 |
+
Flask-SocketIO==5.3.6
|
19 |
+
frozenlist==1.4.1
|
20 |
+
fsspec==2024.6.1
|
21 |
+
greenlet==3.0.3
|
22 |
+
groq==0.9.0
|
23 |
+
h11==0.14.0
|
24 |
+
httpcore==1.0.5
|
25 |
+
httpx==0.27.0
|
26 |
+
huggingface-hub==0.24.2
|
27 |
+
idna==3.7
|
28 |
+
importlib-metadata==8.2.0
|
29 |
+
itsdangerous==2.2.0
|
30 |
+
jinja2==3.1.4
|
31 |
+
joblib==1.4.2
|
32 |
+
jsonpatch==1.33
|
33 |
+
jsonpointer==3.0.0
|
34 |
+
langchain==0.2.11
|
35 |
+
langchain-community==0.2.10
|
36 |
+
langchain-core==0.2.24
|
37 |
+
langchain-groq==0.1.6
|
38 |
+
langchain-huggingface==0.0.3
|
39 |
+
langchain-text-splitters==0.2.2
|
40 |
+
langsmith==0.1.93
|
41 |
+
MarkupSafe==2.1.5
|
42 |
+
marshmallow==3.21.3
|
43 |
+
mmh3==4.1.0
|
44 |
+
mpmath==1.3.0
|
45 |
+
multidict==6.0.5
|
46 |
+
mypy-extensions==1.0.0
|
47 |
+
networkx==3.1
|
48 |
+
nltk==3.8.1
|
49 |
+
numpy==1.24.4
|
50 |
+
nvidia-cublas-cu12==12.1.3.1
|
51 |
+
nvidia-cuda-cupti-cu12==12.1.105
|
52 |
+
nvidia-cuda-nvrtc-cu12==12.1.105
|
53 |
+
nvidia-cuda-runtime-cu12==12.1.105
|
54 |
+
nvidia-cudnn-cu12==9.1.0.70
|
55 |
+
nvidia-cufft-cu12==11.0.2.54
|
56 |
+
nvidia-curand-cu12==10.3.2.106
|
57 |
+
nvidia-cusolver-cu12==11.4.5.107
|
58 |
+
nvidia-cusparse-cu12==12.1.0.106
|
59 |
+
nvidia-nccl-cu12==2.20.5
|
60 |
+
nvidia-nvjitlink-cu12==12.5.82
|
61 |
+
nvidia-nvtx-cu12==12.1.105
|
62 |
+
orjson==3.10.6
|
63 |
+
packaging==24.1
|
64 |
+
pillow==10.4.0
|
65 |
+
pinecone==4.0.0
|
66 |
+
pinecone-text==0.9.0
|
67 |
+
pydantic==2.8.2
|
68 |
+
pydantic-core==2.20.1
|
69 |
+
python-dotenv==1.0.1
|
70 |
+
python-engineio==4.9.1
|
71 |
+
python-socketio==5.11.3
|
72 |
+
PyYAML==6.0.1
|
73 |
+
regex==2024.7.24
|
74 |
+
requests==2.32.3
|
75 |
+
safetensors==0.4.3
|
76 |
+
scikit-learn==1.3.2
|
77 |
+
scipy==1.10.1
|
78 |
+
sentence-transformers==3.0.1
|
79 |
+
simple-websocket==1.0.0
|
80 |
+
sniffio==1.3.1
|
81 |
+
SQLAlchemy==2.0.31
|
82 |
+
sympy==1.13.1
|
83 |
+
tenacity==8.5.0
|
84 |
+
threadpoolctl==3.5.0
|
85 |
+
tokenizers==0.19.1
|
86 |
+
torch==2.4.0
|
87 |
+
tqdm==4.66.4
|
88 |
+
transformers==4.43.3
|
89 |
+
triton==3.0.0
|
90 |
+
types-requests==2.32.0.20240712
|
91 |
+
typing-extensions==4.12.2
|
92 |
+
typing-inspect==0.9.0
|
93 |
+
urllib3==2.2.2
|
94 |
+
werkzeug==3.0.3
|
95 |
+
wget==3.2
|
96 |
+
wsproto==1.2.0
|
97 |
+
yarl==1.9.4
|
98 |
+
zipp==3.19.2
|
99 |
+
gunicorn
|