Spaces:
Runtime error
Runtime error
import os | |
from typing import List, Dict, Tuple, Any | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
import supervision as sv | |
import torch | |
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator | |
from gpt4v import prompt_image | |
from utils import postprocess_masks, Visualizer | |
from sam_utils import sam_interactive_inference | |
HOME = os.getenv("HOME") | |
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
SAM_CHECKPOINT = os.path.join(HOME, "app/weights/sam_vit_h_4b8939.pth") | |
# SAM_CHECKPOINT = "weights/sam_vit_h_4b8939.pth" | |
SAM_MODEL_TYPE = "vit_h" | |
MARKDOWN = """ | |
[](https://arxiv.org/pdf/2310.11441.pdf) | |
<h1 style='text-align: center'> | |
<img | |
src='https://som-gpt4v.github.io/website/img/som_logo.png' | |
style='height:50px; display:inline-block' | |
/> | |
Set-of-Mark (SoM) Prompting Unleashes Extraordinary Visual Grounding in GPT-4V | |
</h1> | |
## 🚧 Roadmap | |
- [ ] Support for alphabetic labels | |
- [ ] Support for Semantic-SAM (multi-level) | |
- [ ] Support for result highlighting | |
- [ ] Support for mask filtering based on granularity | |
""" | |
SAM = sam_model_registry[SAM_MODEL_TYPE](checkpoint=SAM_CHECKPOINT).to(device=DEVICE) | |
def inference( | |
image_and_mask: Dict[str, np.ndarray], | |
annotation_mode: List[str], | |
mask_alpha: float | |
) -> Tuple[Tuple[np.ndarray, List[Any]], sv.Detections]: | |
image = image_and_mask['image'] | |
mask = cv2.cvtColor(image_and_mask['mask'], cv2.COLOR_RGB2GRAY) | |
is_interactive = not np.all(mask == 0) | |
visualizer = Visualizer(mask_opacity=mask_alpha) | |
if is_interactive: | |
detections = sam_interactive_inference( | |
image=image, | |
mask=mask, | |
model=SAM) | |
else: | |
mask_generator = SamAutomaticMaskGenerator(SAM) | |
result = mask_generator.generate(image=image) | |
detections = sv.Detections.from_sam(result) | |
detections = postprocess_masks( | |
detections=detections) | |
bgr_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
annotated_image = visualizer.visualize( | |
image=bgr_image, | |
detections=detections, | |
with_box="Box" in annotation_mode, | |
with_mask="Mask" in annotation_mode, | |
with_polygon="Polygon" in annotation_mode, | |
with_label="Mark" in annotation_mode) | |
return (cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB), []), detections | |
def prompt(message, history, image: np.ndarray, api_key: str) -> str: | |
if api_key == "": | |
return "⚠️ Please set your OpenAI API key first" | |
if image is None: | |
return "⚠️ Please generate SoM visual prompt first" | |
return prompt_image( | |
api_key=api_key, | |
image=cv2.cvtColor(image, cv2.COLOR_BGR2RGB), | |
prompt=message | |
) | |
def on_image_input_clear(): | |
return None, None | |
image_input = gr.Image( | |
label="Input", | |
type="numpy", | |
tool="sketch", | |
interactive=True, | |
brush_radius=20.0, | |
brush_color="#FFFFFF" | |
) | |
checkbox_annotation_mode = gr.CheckboxGroup( | |
choices=["Mark", "Polygon", "Mask", "Box"], | |
value=['Mark'], | |
label="Annotation Mode") | |
slider_mask_alpha = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=0.05, | |
label="Mask Alpha") | |
image_output = gr.AnnotatedImage( | |
label="SoM Visual Prompt") | |
openai_api_key = gr.Textbox( | |
show_label=False, | |
placeholder="Before you start chatting, set your OpenAI API key here", | |
lines=1, | |
type="password") | |
chatbot = gr.Chatbot( | |
label="GPT-4V + SoM", | |
height=256) | |
run_button = gr.Button("Run") | |
with gr.Blocks() as demo: | |
gr.Markdown(MARKDOWN) | |
detections_state = gr.State() | |
with gr.Row(): | |
with gr.Column(): | |
image_input.render() | |
with gr.Accordion( | |
label="Detailed prompt settings (e.g., mark type)", | |
open=False): | |
with gr.Row(): | |
checkbox_annotation_mode.render() | |
with gr.Row(): | |
slider_mask_alpha.render() | |
with gr.Column(): | |
image_output.render() | |
run_button.render() | |
with gr.Row(): | |
openai_api_key.render() | |
with gr.Row(): | |
gr.ChatInterface( | |
chatbot=chatbot, | |
fn=prompt, | |
additional_inputs=[image_output, openai_api_key]) | |
run_button.click( | |
fn=inference, | |
inputs=[image_input, checkbox_annotation_mode, slider_mask_alpha], | |
outputs=[image_output, detections_state]) | |
image_input.clear( | |
fn=on_image_input_clear, | |
outputs=[image_output, detections_state] | |
) | |
demo.queue().launch(debug=False, show_error=True) | |