Spaces:
Runtime error
Runtime error
import cv2 | |
import base64 | |
import requests | |
import numpy as np | |
META_PROMPT = ''' | |
For any labels or markings on an image that you reference in your response, please | |
enclose them in square brackets ([]) and list them explicitly. Do not use ranges; for | |
example, instead of '1 - 4', list as '[1], [2], [3], [4]'. These labels could be | |
numbers or letters and typically correspond to specific segments or parts of the image. | |
''' | |
API_URL = "https://api.openai.com/v1/chat/completions" | |
def encode_image_to_base64(image: np.ndarray) -> str: | |
""" | |
Encodes an image into a base64-encoded string in JPEG format. | |
Parameters: | |
image (np.ndarray): The image to be encoded. This should be a numpy array as | |
typically used in OpenCV. | |
Returns: | |
str: A base64-encoded string representing the image in JPEG format. | |
""" | |
success, buffer = cv2.imencode('.jpg', image) | |
if not success: | |
raise ValueError("Could not encode image to JPEG format.") | |
encoded_image = base64.b64encode(buffer).decode('utf-8') | |
return encoded_image | |
def compose_headers(api_key: str) -> dict: | |
return { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {api_key}" | |
} | |
def compose_payload(image: np.ndarray, prompt: str) -> dict: | |
base64_image = encode_image_to_base64(image) | |
return { | |
"model": "gpt-4-vision-preview", | |
"messages": [ | |
{ | |
"role": "system", | |
"content": [ | |
META_PROMPT | |
] | |
}, | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "text", | |
"text": prompt | |
}, | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": f"data:image/jpeg;base64,{base64_image}" | |
} | |
} | |
] | |
} | |
], | |
"max_tokens": 800 | |
} | |
def prompt_image(api_key: str, image: np.ndarray, prompt: str) -> str: | |
headers = compose_headers(api_key=api_key) | |
payload = compose_payload(image=image, prompt=prompt) | |
response = requests.post(url=API_URL, headers=headers, json=payload).json() | |
if 'error' in response: | |
raise ValueError(response['error']['message']) | |
return response['choices'][0]['message']['content'] | |