Spaces:
Sleeping
Sleeping
File size: 4,654 Bytes
1237c34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
#!/usr/bin/env python
# coding: utf-8
# <span style="font-width:bold; font-size: 3rem; color:#333;">- Part 02: Daily Feature Pipeline for Air Quality (aqicn.org) and weather (openmeteo)</span>
#
# ## 🗒️ This notebook is divided into the following sections:
# 1. Download and Parse Data
# 2. Feature Group Insertion
#
#
# __This notebook should be scheduled to run daily__
#
# In the book, we use a GitHub Action stored here:
# [.github/workflows/air-quality-daily.yml](https://github.com/featurestorebook/mlfs-book/blob/main/.github/workflows/air-quality-daily.yml)
#
# However, you are free to use any Python Orchestration tool to schedule this program to run daily.
# ### <span style='color:#ff5f27'> 📝 Imports
# In[1]:
import datetime
import time
import requests
import pandas as pd
import hopsworks
from functions import util
import json
import os
import warnings
warnings.filterwarnings("ignore")
# ## <span style='color:#ff5f27'> 🌍 Get the Sensor URL, Country, City, Street names from Hopsworks </span>
#
# __Update the values in the cell below.__
#
# __These should be the same values as in notebook 1 - the feature backfill notebook__
#
# In[2]:
# If you haven't set the env variable 'HOPSWORKS_API_KEY', then uncomment the next line and enter your API key
# os.environ["HOPSWORKS_API_KEY"] = ""
project = hopsworks.login()
fs = project.get_feature_store()
secrets = util.secrets_api(project.name)
# This line will fail if you have not registered the AQI_API_KEY as a secret in Hopsworks
AQI_API_KEY = secrets.get_secret("AQI_API_KEY").value
location_str = secrets.get_secret("SENSOR_LOCATION_JSON").value
location = json.loads(location_str)
country=location['country']
city=location['city']
street=location['street']
aqicn_url=location['aqicn_url']
latitude=location['latitude']
longitude=location['longitude']
today = datetime.date.today()
location_str
# ### <span style="color:#ff5f27;"> 🔮 Get references to the Feature Groups </span>
# In[3]:
# Retrieve feature groups
air_quality_fg = fs.get_feature_group(
name='air_quality',
version=1,
)
weather_fg = fs.get_feature_group(
name='weather',
version=1,
)
# ---
# ## <span style='color:#ff5f27'> 🌫 Retrieve Today's Air Quality data (PM2.5) from the AQI API</span>
#
# In[4]:
import requests
import pandas as pd
aq_today_df = util.get_pm25(aqicn_url, country, city, street, today, AQI_API_KEY)
# aq_today_df = util.get_pm25(aqicn_url, country, city, street, "2024-11-05", AQI_API_KEY)
aq_today_df['date'] = pd.to_datetime(aq_today_df['date']).dt.date
aq_today_df
# In[5]:
aq_today_df.info()
# In[24]:
from datetime import timedelta
# Generate a list of dates for the past three days (including today)
dates_list = [pd.to_datetime(today - timedelta(days=i)).tz_localize('UTC') for i in range(1,4)] # [0, 1, 2, 3]
print("Dates to filter:", dates_list)
# In[9]:
selected_features = air_quality_fg.select(['pm25']).join(weather_fg.select_all(), on=['city'])
selected_features = selected_features.read()
# filtered_df = selected_features[selected_features['date'].isin(dates_list)]
selected_features[selected_features['date'] <= dates_list[0]][selected_features['date'] >= dates_list[2]]
# In[17]:
past_3_day_mean = selected_features[selected_features['date'] <= dates_list[0]][selected_features['date'] >= dates_list[2]]['pm25'].mean()
# In[18]:
import numpy as np
past_3_day_mean = np.float64(past_3_day_mean)
# In[19]:
aq_today_df['past_air_quality'] = past_3_day_mean
# ## <span style='color:#ff5f27'> 🌦 Get Weather Forecast data</span>
# In[20]:
hourly_df = util.get_hourly_weather_forecast(city, latitude, longitude)
hourly_df = hourly_df.set_index('date')
# We will only make 1 daily prediction, so we will replace the hourly forecasts with a single daily forecast
# We only want the daily weather data, so only get weather at 12:00
daily_df = hourly_df.between_time('11:59', '12:01')
daily_df = daily_df.reset_index()
daily_df['date'] = pd.to_datetime(daily_df['date']).dt.date
daily_df['date'] = pd.to_datetime(daily_df['date'])
# daily_df['date'] = daily_df['date'].astype(str)
daily_df['city'] = city
daily_df
# In[21]:
daily_df.info()
# ## <span style="color:#ff5f27;">⬆️ Uploading new data to the Feature Store</span>
# In[22]:
# Insert new data
air_quality_fg.insert(aq_today_df)
# In[23]:
# Insert new data
weather_fg.insert(daily_df)
# ## <span style="color:#ff5f27;">⏭️ **Next:** Part 03: Training Pipeline
# </span>
#
# In the following notebook you will read from a feature group and create training dataset within the feature store
#
# In[ ]:
|