Spaces:
Running
Running
File size: 1,319 Bytes
dd8b1bf f6be049 dd8b1bf 1030c11 357994a 1237c34 357994a f6be049 357994a f6be049 357994a 82057dc 357994a f6be049 357994a f6be049 1030c11 357994a f6be049 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import streamlit as st
import pandas as pd
import numpy as np
import datetime
import hopsworks
from functions import figure, util
import os
import pickle
import plotly.express as px
import json
# Set up
api_key = os.getenv('HOPSWORKS_API_KEY')
project_name = os.getenv('HOPSWORKS_PROJECT')
project = hopsworks.login(project=project_name, api_key_value=api_key)
fs = project.get_feature_store()
secrets = util.secrets_api(project.name)
feature_view = fs.get_feature_view(
name='air_quality_fv',
version=1,
)
df = feature_view.get_batch_data(start_time=None, end_time=None, read_options=None).sort_values(by='date')
today = datetime.datetime.now() - datetime.timedelta(0)
st.set_page_config(
page_title="Air Quality Prediction",
page_icon="🧊",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'About': "# Air Quality Prediction"
}
)
st.title('Lahore Air Quality')
st.subheader('Forecast and hindcast')
st.subheader('Unit: PM25 - particle matter of diameter < 2.5 micrometers')
#pickle_file_path = 'air_quality_df.pkl'
pickle_file_path = 'outcome_df.pkl'
with open(pickle_file_path, 'rb') as file:
st.session_state.df = pickle.load(file).sort_values(by="date")
fig = figure.plot(st.session_state.df)
# Render the chart in Streamlit
st.plotly_chart(fig) |