Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# coding: utf-8 | |
# <span style="font-width:bold; font-size: 3rem; color:#333;">- Part 02: Daily Feature Pipeline for Air Quality (aqicn.org) and weather (openmeteo)</span> | |
# | |
# ## ๐๏ธ This notebook is divided into the following sections: | |
# 1. Download and Parse Data | |
# 2. Feature Group Insertion | |
# | |
# | |
# __This notebook should be scheduled to run daily__ | |
# | |
# In the book, we use a GitHub Action stored here: | |
# [.github/workflows/air-quality-daily.yml](https://github.com/featurestorebook/mlfs-book/blob/main/.github/workflows/air-quality-daily.yml) | |
# | |
# However, you are free to use any Python Orchestration tool to schedule this program to run daily. | |
# ### <span style='color:#ff5f27'> ๐ Imports | |
# In[1]: | |
import datetime | |
import time | |
import requests | |
import pandas as pd | |
import hopsworks | |
from functions import util | |
import json | |
import os | |
import warnings | |
warnings.filterwarnings("ignore") | |
# ## <span style='color:#ff5f27'> ๐ Get the Sensor URL, Country, City, Street names from Hopsworks </span> | |
# | |
# __Update the values in the cell below.__ | |
# | |
# __These should be the same values as in notebook 1 - the feature backfill notebook__ | |
# | |
# In[2]: | |
# If you haven't set the env variable 'HOPSWORKS_API_KEY', then uncomment the next line and enter your API key | |
# os.environ["HOPSWORKS_API_KEY"] = "" | |
project = hopsworks.login() | |
fs = project.get_feature_store() | |
secrets = util.secrets_api(project.name) | |
# This line will fail if you have not registered the AQI_API_KEY as a secret in Hopsworks | |
AQI_API_KEY = secrets.get_secret("AQI_API_KEY").value | |
location_str = secrets.get_secret("SENSOR_LOCATION_JSON").value | |
location = json.loads(location_str) | |
country=location['country'] | |
city=location['city'] | |
street=location['street'] | |
aqicn_url=location['aqicn_url'] | |
latitude=location['latitude'] | |
longitude=location['longitude'] | |
today = datetime.date.today() | |
location_str | |
# ### <span style="color:#ff5f27;"> ๐ฎ Get references to the Feature Groups </span> | |
# In[3]: | |
# Retrieve feature groups | |
air_quality_fg = fs.get_feature_group( | |
name='air_quality', | |
version=1, | |
) | |
weather_fg = fs.get_feature_group( | |
name='weather', | |
version=1, | |
) | |
# --- | |
# ## <span style='color:#ff5f27'> ๐ซ Retrieve Today's Air Quality data (PM2.5) from the AQI API</span> | |
# | |
# In[4]: | |
import requests | |
import pandas as pd | |
aq_today_df = util.get_pm25(aqicn_url, country, city, street, today, AQI_API_KEY) | |
# aq_today_df = util.get_pm25(aqicn_url, country, city, street, "2024-11-05", AQI_API_KEY) | |
aq_today_df['date'] = pd.to_datetime(aq_today_df['date']).dt.date | |
aq_today_df | |
# In[5]: | |
aq_today_df.info() | |
# In[24]: | |
from datetime import timedelta | |
# Generate a list of dates for the past three days (including today) | |
dates_list = [pd.to_datetime(today - timedelta(days=i)).tz_localize('UTC') for i in range(1,4)] # [0, 1, 2, 3] | |
print("Dates to filter:", dates_list) | |
# In[9]: | |
selected_features = air_quality_fg.select(['pm25']).join(weather_fg.select_all(), on=['city']) | |
selected_features = selected_features.read() | |
# filtered_df = selected_features[selected_features['date'].isin(dates_list)] | |
selected_features[selected_features['date'] <= dates_list[0]][selected_features['date'] >= dates_list[2]] | |
# In[17]: | |
past_3_day_mean = selected_features[selected_features['date'] <= dates_list[0]][selected_features['date'] >= dates_list[2]]['pm25'].mean() | |
# In[18]: | |
import numpy as np | |
past_3_day_mean = np.float64(past_3_day_mean) | |
# In[19]: | |
aq_today_df['past_air_quality'] = past_3_day_mean | |
# ## <span style='color:#ff5f27'> ๐ฆ Get Weather Forecast data</span> | |
# In[20]: | |
hourly_df = util.get_hourly_weather_forecast(city, latitude, longitude) | |
hourly_df = hourly_df.set_index('date') | |
# We will only make 1 daily prediction, so we will replace the hourly forecasts with a single daily forecast | |
# We only want the daily weather data, so only get weather at 12:00 | |
daily_df = hourly_df.between_time('11:59', '12:01') | |
daily_df = daily_df.reset_index() | |
daily_df['date'] = pd.to_datetime(daily_df['date']).dt.date | |
daily_df['date'] = pd.to_datetime(daily_df['date']) | |
# daily_df['date'] = daily_df['date'].astype(str) | |
daily_df['city'] = city | |
daily_df | |
# In[21]: | |
daily_df.info() | |
# ## <span style="color:#ff5f27;">โฌ๏ธ Uploading new data to the Feature Store</span> | |
# In[22]: | |
# Insert new data | |
air_quality_fg.insert(aq_today_df) | |
# In[23]: | |
# Insert new data | |
weather_fg.insert(daily_df) | |
# ## <span style="color:#ff5f27;">โญ๏ธ **Next:** Part 03: Training Pipeline | |
# </span> | |
# | |
# In the following notebook you will read from a feature group and create training dataset within the feature store | |
# | |
# In[ ]: | |