Spaces:
Sleeping
Sleeping
File size: 1,951 Bytes
a427fbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
# Your app.py goes here
# Program title: ______________
# import part
import streamlit as st
from transformers import pipeline
# function part - FOUR functions
# img2text()
def img2text(url):
image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
text = image_to_text_model(url)[0]["generated_text"]
return text
# text2story
def text2story(text):
pipe = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2")
story_text = pipe(text)[0]['generated_text']
return story_text
# text2audio
def text2audio(story_text):
pipe = pipeline("text-to-audio", model="Matthijs/mms-tts-eng")
audio_data = pipe(story_text)
return audio_data
# main()
if __name__ == "__main__":
main()
def main():
st.set_page_config(page_title="Your Image to Audio Story",
page_icon="🦜")
st.header("Turn Your Image to Audio Story")
uploaded_file = st.file_uploader("Select an Image...")
if uploaded_file is not None:
print(uploaded_file)
bytes_data = uploaded_file.getvalue()
with open(uploaded_file.name, "wb") as file:
file.write(bytes_data)
st.image(uploaded_file, caption="Uploaded Image",
use_column_width=True)
#Stage 1: Image to Text
st.text('Processing img2text...')
scenario = img2text(uploaded_file.name)
st.write(scenario)
#Stage 2: Text to Story
st.text('Generating a story...')
story = text2story(scenario)
st.write(story)
#Stage 3: Story to Audio data
st.text('Generating audio data...')
audio_data =text2audio(story)
# Play button
if st.button("Play Audio"):
st.audio(audio_data['audio'],
format="audio/wav",
start_time=0,
sample_rate = audio_data['sampling_rate'])
|