File size: 1,951 Bytes
a427fbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Your app.py goes here

# Program title: ______________



# import part

import streamlit as st
from transformers import pipeline


# function part - FOUR functions
# img2text()
def img2text(url):
    image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
    text = image_to_text_model(url)[0]["generated_text"]
    return text


# text2story
def text2story(text):
    pipe = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2")
    story_text = pipe(text)[0]['generated_text']
    return story_text

# text2audio
def text2audio(story_text):
    pipe = pipeline("text-to-audio", model="Matthijs/mms-tts-eng")
    audio_data = pipe(story_text)
    return audio_data

# main()

if __name__ == "__main__":
    main()

def main():

    st.set_page_config(page_title="Your Image to Audio Story",
                      page_icon="🦜")
    st.header("Turn Your Image to Audio Story")
    uploaded_file = st.file_uploader("Select an Image...")

    if uploaded_file is not None:
        print(uploaded_file)
        bytes_data = uploaded_file.getvalue()
        with open(uploaded_file.name, "wb") as file:
            file.write(bytes_data)
        st.image(uploaded_file, caption="Uploaded Image",
                use_column_width=True)

        #Stage 1: Image to Text
        st.text('Processing img2text...')
        scenario = img2text(uploaded_file.name)
        st.write(scenario)

        #Stage 2: Text to Story
        st.text('Generating a story...')
        story = text2story(scenario)
        st.write(story)

        #Stage 3: Story to Audio data
        st.text('Generating audio data...')
        audio_data =text2audio(story)

        # Play button
        if st.button("Play Audio"):
            st.audio(audio_data['audio'],
                        format="audio/wav",
                        start_time=0,
                        sample_rate = audio_data['sampling_rate'])