Spaces:
Runtime error
Runtime error
Rodneyontherock1067
commited on
Commit
•
87c5489
1
Parent(s):
1d9b085
Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +7 -0
- LICENSE +21 -0
- Readme.md +566 -0
- SDXL-Turbo-LICENSE.TXT +58 -0
- benchmark-openvino.bat +23 -0
- benchmark.bat +23 -0
- configs/lcm-lora-models.txt +4 -0
- configs/lcm-models.txt +8 -0
- configs/openvino-lcm-models.txt +8 -0
- configs/stable-diffusion-models.txt +7 -0
- controlnet_models/Readme.txt +3 -0
- docs/images/2steps-inference.jpg +0 -0
- docs/images/fastcpu-cli.png +0 -0
- docs/images/fastcpu-webui.png +0 -0
- docs/images/fastsdcpu-android-termux-pixel7.png +0 -0
- docs/images/fastsdcpu-api.png +0 -0
- docs/images/fastsdcpu-gui.jpg +0 -0
- docs/images/fastsdcpu-mac-gui.jpg +0 -0
- docs/images/fastsdcpu-screenshot.png +0 -0
- docs/images/fastsdcpu-webui.png +0 -0
- docs/images/fastsdcpu_flux_on_cpu.png +0 -0
- install-mac.sh +31 -0
- install.bat +29 -0
- install.sh +39 -0
- lora_models/Readme.txt +3 -0
- requirements.txt +19 -0
- src/__init__.py +0 -0
- src/app.py +534 -0
- src/app_settings.py +94 -0
- src/backend/__init__.py +0 -0
- src/backend/annotators/canny_control.py +15 -0
- src/backend/annotators/control_interface.py +12 -0
- src/backend/annotators/depth_control.py +15 -0
- src/backend/annotators/image_control_factory.py +31 -0
- src/backend/annotators/lineart_control.py +11 -0
- src/backend/annotators/mlsd_control.py +10 -0
- src/backend/annotators/normal_control.py +10 -0
- src/backend/annotators/pose_control.py +10 -0
- src/backend/annotators/shuffle_control.py +10 -0
- src/backend/annotators/softedge_control.py +10 -0
- src/backend/api/models/response.py +16 -0
- src/backend/api/web.py +103 -0
- src/backend/base64_image.py +21 -0
- src/backend/controlnet.py +90 -0
- src/backend/device.py +23 -0
- src/backend/image_saver.py +60 -0
- src/backend/lcm_text_to_image.py +414 -0
- src/backend/lora.py +136 -0
- src/backend/models/device.py +9 -0
- src/backend/models/gen_images.py +16 -0
.gitignore
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
env
|
2 |
+
*.bak
|
3 |
+
*.pyc
|
4 |
+
__pycache__
|
5 |
+
results
|
6 |
+
# excluding user settings for the GUI frontend
|
7 |
+
configs/settings.yaml
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 Rupesh Sreeraman
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
Readme.md
ADDED
@@ -0,0 +1,566 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# FastSD CPU :sparkles:[![Mentioned in Awesome OpenVINO](https://awesome.re/mentioned-badge-flat.svg)](https://github.com/openvinotoolkit/awesome-openvino)
|
2 |
+
|
3 |
+
<div align="center">
|
4 |
+
<a href="https://trendshift.io/repositories/3957" target="_blank"><img src="https://trendshift.io/api/badge/repositories/3957" alt="rupeshs%2Ffastsdcpu | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
|
5 |
+
</div>
|
6 |
+
|
7 |
+
FastSD CPU is a faster version of Stable Diffusion on CPU. Based on [Latent Consistency Models](https://github.com/luosiallen/latent-consistency-model) and
|
8 |
+
[Adversarial Diffusion Distillation](https://nolowiz.com/fast-stable-diffusion-on-cpu-using-fastsd-cpu-and-openvino/).
|
9 |
+
|
10 |
+
![FastSD CPU screenshot](https://raw.githubusercontent.com/rupeshs/fastsdcpu/main/docs/images/fastsdcpu-webui.png)
|
11 |
+
The following interfaces are available :
|
12 |
+
|
13 |
+
- Desktop GUI, basic text to image generation (Qt,faster)
|
14 |
+
- WebUI (Advanced features,Lora,controlnet etc)
|
15 |
+
- CLI (CommandLine Interface)
|
16 |
+
|
17 |
+
🚀 Using __OpenVINO(SDXS-512-0.9)__, it took __0.82 seconds__ (__820 milliseconds__) to create a single 512x512 image on a __Core i7-12700__.
|
18 |
+
|
19 |
+
## Table of Contents
|
20 |
+
|
21 |
+
- [Supported Platforms](#Supported platforms)
|
22 |
+
- [Memory requirements](#memory-requirements)
|
23 |
+
- [Features](#features)
|
24 |
+
- [Benchmarks](#fast-inference-benchmarks)
|
25 |
+
- [OpenVINO Support](#openvino)
|
26 |
+
- [Installation](#installation)
|
27 |
+
- [Real-time text to image (EXPERIMENTAL)](#real-time-text-to-image)
|
28 |
+
- [Models](#models)
|
29 |
+
- [How to use Lora models](#useloramodels)
|
30 |
+
- [How to use controlnet](#usecontrolnet)
|
31 |
+
- [Android](#android)
|
32 |
+
- [Raspberry Pi 4](#raspberry)
|
33 |
+
- [Orange Pi 5](#orangepi)
|
34 |
+
- [API Support](#apisupport)
|
35 |
+
- [License](#license)
|
36 |
+
- [Contributors](#contributors)
|
37 |
+
|
38 |
+
## Supported platforms⚡️
|
39 |
+
|
40 |
+
FastSD CPU works on the following platforms:
|
41 |
+
|
42 |
+
- Windows
|
43 |
+
- Linux
|
44 |
+
- Mac
|
45 |
+
- Android + Termux
|
46 |
+
- Raspberry PI 4
|
47 |
+
|
48 |
+
## Memory requirements
|
49 |
+
|
50 |
+
Minimum system RAM requirement for FastSD CPU.
|
51 |
+
|
52 |
+
Model (LCM,OpenVINO): SD Turbo, 1 step, 512 x 512
|
53 |
+
|
54 |
+
Model (LCM-LoRA): Dreamshaper v8, 3 step, 512 x 512
|
55 |
+
|
56 |
+
| Mode | Min RAM |
|
57 |
+
| --------------------- | ------------- |
|
58 |
+
| LCM | 2 GB |
|
59 |
+
| LCM-LoRA | 4 GB |
|
60 |
+
| OpenVINO | 11 GB |
|
61 |
+
|
62 |
+
If we enable Tiny decoder(TAESD) we can save some memory(2GB approx) for example in OpenVINO mode memory usage will become 9GB.
|
63 |
+
|
64 |
+
:exclamation: Please note that guidance scale >1 increases RAM usage and slow inference speed.
|
65 |
+
|
66 |
+
## Features
|
67 |
+
|
68 |
+
- Desktop GUI, web UI and CLI
|
69 |
+
- Supports 256,512,768,1024 image sizes
|
70 |
+
- Supports Windows,Linux,Mac
|
71 |
+
- Saves images and diffusion setting used to generate the image
|
72 |
+
- Settings to control,steps,guidance and seed
|
73 |
+
- Added safety checker setting
|
74 |
+
- Maximum inference steps increased to 25
|
75 |
+
- Added [OpenVINO](https://github.com/openvinotoolkit/openvino) support
|
76 |
+
- Fixed OpenVINO image reproducibility issue
|
77 |
+
- Fixed OpenVINO high RAM usage,thanks [deinferno](https://github.com/deinferno)
|
78 |
+
- Added multiple image generation support
|
79 |
+
- Application settings
|
80 |
+
- Added Tiny Auto Encoder for SD (TAESD) support, 1.4x speed boost (Fast,moderate quality)
|
81 |
+
- Safety checker disabled by default
|
82 |
+
- Added SDXL,SSD1B - 1B LCM models
|
83 |
+
- Added LCM-LoRA support, works well for fine-tuned Stable Diffusion model 1.5 or SDXL models
|
84 |
+
- Added negative prompt support in LCM-LoRA mode
|
85 |
+
- LCM-LoRA models can be configured using text configuration file
|
86 |
+
- Added support for custom models for OpenVINO (LCM-LoRA baked)
|
87 |
+
- OpenVINO models now supports negative prompt (Set guidance >1.0)
|
88 |
+
- Real-time inference support,generates images while you type (experimental)
|
89 |
+
- Fast 2,3 steps inference
|
90 |
+
- Lcm-Lora fused models for faster inference
|
91 |
+
- Supports integrated GPU(iGPU) using OpenVINO (export DEVICE=GPU)
|
92 |
+
- 5.7x speed using OpenVINO(steps: 2,tiny autoencoder)
|
93 |
+
- Image to Image support (Use Web UI)
|
94 |
+
- OpenVINO image to image support
|
95 |
+
- Fast 1 step inference (SDXL Turbo)
|
96 |
+
- Added SD Turbo support
|
97 |
+
- Added image to image support for Turbo models (Pytorch and OpenVINO)
|
98 |
+
- Added image variations support
|
99 |
+
- Added 2x upscaler (EDSR and Tiled SD upscale (experimental)),thanks [monstruosoft](https://github.com/monstruosoft) for SD upscale
|
100 |
+
- Works on Android + Termux + PRoot
|
101 |
+
- Added interactive CLI,thanks [monstruosoft](https://github.com/monstruosoft)
|
102 |
+
- Added basic lora support to CLI and WebUI
|
103 |
+
- ONNX EDSR 2x upscale
|
104 |
+
- Add SDXL-Lightning support
|
105 |
+
- Add SDXL-Lightning OpenVINO support (int8)
|
106 |
+
- Add multilora support,thanks [monstruosoft](https://github.com/monstruosoft)
|
107 |
+
- Add basic ControlNet v1.1 support(LCM-LoRA mode),thanks [monstruosoft](https://github.com/monstruosoft)
|
108 |
+
- Add ControlNet annotators(Canny,Depth,LineArt,MLSD,NormalBAE,Pose,SoftEdge,Shuffle)
|
109 |
+
- Add SDXS-512 0.9 support
|
110 |
+
- Add SDXS-512 0.9 OpenVINO,fast 1 step inference (0.8 seconds to generate 512x512 image)
|
111 |
+
- Default model changed to SDXS-512-0.9
|
112 |
+
- Faster realtime image generation
|
113 |
+
- Add NPU device check
|
114 |
+
- Revert default model to SDTurbo
|
115 |
+
- Update realtime UI
|
116 |
+
- Add hypersd support
|
117 |
+
- 1 step fast inference support for SDXL and SD1.5
|
118 |
+
- Experimental support for single file Safetensors SD 1.5 models(Civitai models), simply add local model path to configs/stable-diffusion-models.txt file.
|
119 |
+
- Add REST API support
|
120 |
+
- Add Aura SR (4x)/GigaGAN based upscaler support
|
121 |
+
- Add Aura SR v2 upscaler support
|
122 |
+
- Add FLUX.1 schnell OpenVINO int 4 support
|
123 |
+
|
124 |
+
<a id="fast-inference-benchmarks"></a>
|
125 |
+
|
126 |
+
## Fast Inference Benchmarks
|
127 |
+
|
128 |
+
### 🚀 Fast 1 step inference with Hyper-SD
|
129 |
+
|
130 |
+
#### Stable diffuion 1.5
|
131 |
+
|
132 |
+
Works with LCM-LoRA mode.
|
133 |
+
Fast 1 step inference supported on `runwayml/stable-diffusion-v1-5` model,select `rupeshs/hypersd-sd1-5-1-step-lora` lcm_lora model from the settings.
|
134 |
+
|
135 |
+
#### Stable diffuion XL
|
136 |
+
|
137 |
+
Works with LCM and LCM-OpenVINO mode.
|
138 |
+
|
139 |
+
- *Hyper-SD SDXL 1 step* - [rupeshs/hyper-sd-sdxl-1-step](https://huggingface.co/rupeshs/hyper-sd-sdxl-1-step)
|
140 |
+
|
141 |
+
- *Hyper-SD SDXL 1 step OpenVINO* - [rupeshs/hyper-sd-sdxl-1-step-openvino-int8](https://huggingface.co/rupeshs/hyper-sd-sdxl-1-step-openvino-int8)
|
142 |
+
|
143 |
+
#### Inference Speed
|
144 |
+
|
145 |
+
Tested on Core i7-12700 to generate __768x768__ image(1 step).
|
146 |
+
|
147 |
+
| Diffusion Pipeline | Latency |
|
148 |
+
| --------------------- | ------------- |
|
149 |
+
| Pytorch | 19s |
|
150 |
+
| OpenVINO | 13s |
|
151 |
+
| OpenVINO + TAESDXL | 6.3s |
|
152 |
+
|
153 |
+
### Fastest 1 step inference (SDXS-512-0.9)
|
154 |
+
|
155 |
+
:exclamation:This is an experimental model, only text to image workflow is supported.
|
156 |
+
|
157 |
+
#### Inference Speed
|
158 |
+
|
159 |
+
Tested on Core i7-12700 to generate __512x512__ image(1 step).
|
160 |
+
|
161 |
+
__SDXS-512-0.9__
|
162 |
+
|
163 |
+
| Diffusion Pipeline | Latency |
|
164 |
+
| --------------------- | ------------- |
|
165 |
+
| Pytorch | 4.8s |
|
166 |
+
| OpenVINO | 3.8s |
|
167 |
+
| OpenVINO + TAESD | __0.82s__ |
|
168 |
+
|
169 |
+
### 🚀 Fast 1 step inference (SD/SDXL Turbo - Adversarial Diffusion Distillation,ADD)
|
170 |
+
|
171 |
+
Added support for ultra fast 1 step inference using [sdxl-turbo](https://huggingface.co/stabilityai/sdxl-turbo) model
|
172 |
+
|
173 |
+
:exclamation: These SD turbo models are intended for research purpose only.
|
174 |
+
|
175 |
+
#### Inference Speed
|
176 |
+
|
177 |
+
Tested on Core i7-12700 to generate __512x512__ image(1 step).
|
178 |
+
|
179 |
+
__SD Turbo__
|
180 |
+
|
181 |
+
| Diffusion Pipeline | Latency |
|
182 |
+
| --------------------- | ------------- |
|
183 |
+
| Pytorch | 7.8s |
|
184 |
+
| OpenVINO | 5s |
|
185 |
+
| OpenVINO + TAESD | 1.7s |
|
186 |
+
|
187 |
+
__SDXL Turbo__
|
188 |
+
|
189 |
+
| Diffusion Pipeline | Latency |
|
190 |
+
| --------------------- | ------------- |
|
191 |
+
| Pytorch | 10s |
|
192 |
+
| OpenVINO | 5.6s |
|
193 |
+
| OpenVINO + TAESDXL | 2.5s |
|
194 |
+
|
195 |
+
### 🚀 Fast 2 step inference (SDXL-Lightning - Adversarial Diffusion Distillation)
|
196 |
+
|
197 |
+
SDXL-Lightning works with LCM and LCM-OpenVINO mode.You can select these models from app settings.
|
198 |
+
|
199 |
+
Tested on Core i7-12700 to generate __768x768__ image(2 steps).
|
200 |
+
|
201 |
+
| Diffusion Pipeline | Latency |
|
202 |
+
| --------------------- | ------------- |
|
203 |
+
| Pytorch | 18s |
|
204 |
+
| OpenVINO | 12s |
|
205 |
+
| OpenVINO + TAESDXL | 10s |
|
206 |
+
|
207 |
+
- *SDXL-Lightning* - [rupeshs/SDXL-Lightning-2steps](https://huggingface.co/rupeshs/SDXL-Lightning-2steps)
|
208 |
+
|
209 |
+
- *SDXL-Lightning OpenVINO* - [rupeshs/SDXL-Lightning-2steps-openvino-int8](https://huggingface.co/rupeshs/SDXL-Lightning-2steps-openvino-int8)
|
210 |
+
|
211 |
+
### 2 Steps fast inference (LCM)
|
212 |
+
|
213 |
+
FastSD CPU supports 2 to 3 steps fast inference using LCM-LoRA workflow. It works well with SD 1.5 models.
|
214 |
+
|
215 |
+
![2 Steps inference](https://raw.githubusercontent.com/rupeshs/fastsdcpu/main/docs/images/2steps-inference.jpg)
|
216 |
+
|
217 |
+
### FLUX.1-schnell OpenVINO support
|
218 |
+
|
219 |
+
![FLUX Schenell OpenVINO](https://raw.githubusercontent.com/rupeshs/fastsdcpu/main/docs/images/fastsdcpu_flux_on_cpu.png)
|
220 |
+
|
221 |
+
:exclamation: Important - Please note the following points with FLUX workflow
|
222 |
+
|
223 |
+
- As of now only text to image generation mode is supported
|
224 |
+
- Use OpenVINO mode
|
225 |
+
- Use int4 model - *rupeshs/FLUX.1-schnell-openvino-int4*
|
226 |
+
- Tiny decoder will not work with FLUX
|
227 |
+
- 512x512 image generation needs around __30GB__ system RAM
|
228 |
+
|
229 |
+
Tested on Intel Core i7-12700 to generate __512x512__ image(3 steps).
|
230 |
+
|
231 |
+
| Diffusion Pipeline | Latency |
|
232 |
+
| --------------------- | ------------- |
|
233 |
+
| OpenVINO | 4 min 30sec |
|
234 |
+
|
235 |
+
### Benchmark scripts
|
236 |
+
|
237 |
+
To benchmark run the following batch file on Windows:
|
238 |
+
|
239 |
+
- `benchmark.bat` - To benchmark Pytorch
|
240 |
+
- `benchmark-openvino.bat` - To benchmark OpenVINO
|
241 |
+
|
242 |
+
Alternatively you can run benchmarks by passing `-b` command line argument in CLI mode.
|
243 |
+
<a id="openvino"></a>
|
244 |
+
|
245 |
+
## OpenVINO support
|
246 |
+
|
247 |
+
Fast SD CPU utilizes [OpenVINO](https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html) to speed up the inference speed.
|
248 |
+
Thanks [deinferno](https://github.com/deinferno) for the OpenVINO model contribution.
|
249 |
+
We can get 2x speed improvement when using OpenVINO.
|
250 |
+
Thanks [Disty0](https://github.com/Disty0) for the conversion script.
|
251 |
+
|
252 |
+
### OpenVINO SDXL models
|
253 |
+
|
254 |
+
These are models converted to use directly use it with FastSD CPU. These models are compressed to int8 to reduce the file size (10GB to 4.4 GB) using [NNCF](https://github.com/openvinotoolkit/nncf)
|
255 |
+
|
256 |
+
- Hyper-SD SDXL 1 step - [rupeshs/hyper-sd-sdxl-1-step-openvino-int8](https://huggingface.co/rupeshs/hyper-sd-sdxl-1-step-openvino-int8)
|
257 |
+
- SDXL Lightning 2 steps - [rupeshs/SDXL-Lightning-2steps-openvino-int8](https://huggingface.co/rupeshs/SDXL-Lightning-2steps-openvino-int8)
|
258 |
+
|
259 |
+
### OpenVINO SD Turbo models
|
260 |
+
|
261 |
+
We have converted SD/SDXL Turbo models to OpenVINO for fast inference on CPU. These models are intended for research purpose only. Also we converted TAESDXL MODEL to OpenVINO and
|
262 |
+
|
263 |
+
- *SD Turbo OpenVINO* - [rupeshs/sd-turbo-openvino](https://huggingface.co/rupeshs/sd-turbo-openvino)
|
264 |
+
- *SDXL Turbo OpenVINO int8* - [rupeshs/sdxl-turbo-openvino-int8](https://huggingface.co/rupeshs/sdxl-turbo-openvino-int8)
|
265 |
+
- *TAESDXL OpenVINO* - [rupeshs/taesdxl-openvino](https://huggingface.co/rupeshs/taesdxl-openvino)
|
266 |
+
|
267 |
+
You can directly use these models in FastSD CPU.
|
268 |
+
|
269 |
+
### Convert SD 1.5 models to OpenVINO LCM-LoRA fused models
|
270 |
+
|
271 |
+
We first creates LCM-LoRA baked in model,replaces the scheduler with LCM and then converts it into OpenVINO model. For more details check [LCM OpenVINO Converter](https://github.com/rupeshs/lcm-openvino-converter), you can use this tools to convert any StableDiffusion 1.5 fine tuned models to OpenVINO.
|
272 |
+
<a id="real-time-text-to-image"></a>
|
273 |
+
|
274 |
+
## Real-time text to image (EXPERIMENTAL)
|
275 |
+
|
276 |
+
We can generate real-time text to images using FastSD CPU.
|
277 |
+
|
278 |
+
__CPU (OpenVINO)__
|
279 |
+
|
280 |
+
Near real-time inference on CPU using OpenVINO, run the `start-realtime.bat` batch file and open the link in browser (Resolution : 512x512,Latency : 0.82s on Intel Core i7)
|
281 |
+
|
282 |
+
Watch YouTube video :
|
283 |
+
|
284 |
+
[![IMAGE_ALT](https://img.youtube.com/vi/0XMiLc_vsyI/0.jpg)](https://www.youtube.com/watch?v=0XMiLc_vsyI)
|
285 |
+
|
286 |
+
## Models
|
287 |
+
|
288 |
+
To use single file [Safetensors](https://huggingface.co/docs/safetensors/en/index) SD 1.5 models(Civit AI) follow this [YouTube tutorial](https://www.youtube.com/watch?v=zZTfUZnXJVk). Use LCM-LoRA Mode for single file safetensors.
|
289 |
+
|
290 |
+
Fast SD supports LCM models and LCM-LoRA models.
|
291 |
+
|
292 |
+
### LCM Models
|
293 |
+
|
294 |
+
These models can be configured in `configs/lcm-models.txt` file.
|
295 |
+
|
296 |
+
### OpenVINO models
|
297 |
+
|
298 |
+
These are LCM-LoRA baked in models. These models can be configured in `configs/openvino-lcm-models.txt` file
|
299 |
+
|
300 |
+
### LCM-LoRA models
|
301 |
+
|
302 |
+
These models can be configured in `configs/lcm-lora-models.txt` file.
|
303 |
+
|
304 |
+
- *lcm-lora-sdv1-5* - distilled consistency adapter for [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)
|
305 |
+
- *lcm-lora-sdxl* - Distilled consistency adapter for [stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
306 |
+
- *lcm-lora-ssd-1b* - Distilled consistency adapter for [segmind/SSD-1B](https://huggingface.co/segmind/SSD-1B)
|
307 |
+
|
308 |
+
These models are used with Stablediffusion base models `configs/stable-diffusion-models.txt`.
|
309 |
+
|
310 |
+
:exclamation: Currently no support for OpenVINO LCM-LoRA models.
|
311 |
+
|
312 |
+
### How to add new LCM-LoRA models
|
313 |
+
|
314 |
+
To add new model follow the steps:
|
315 |
+
For example we will add `wavymulder/collage-diffusion`, you can give Stable diffusion 1.5 Or SDXL,SSD-1B fine tuned models.
|
316 |
+
|
317 |
+
1. Open `configs/stable-diffusion-models.txt` file in text editor.
|
318 |
+
2. Add the model ID `wavymulder/collage-diffusion` or locally cloned path.
|
319 |
+
|
320 |
+
Updated file as shown below :
|
321 |
+
|
322 |
+
```Lykon/dreamshaper-8
|
323 |
+
Fictiverse/Stable_Diffusion_PaperCut_Model
|
324 |
+
stabilityai/stable-diffusion-xl-base-1.0
|
325 |
+
runwayml/stable-diffusion-v1-5
|
326 |
+
segmind/SSD-1B
|
327 |
+
stablediffusionapi/anything-v5
|
328 |
+
wavymulder/collage-diffusion
|
329 |
+
```
|
330 |
+
|
331 |
+
Similarly we can update `configs/lcm-lora-models.txt` file with lcm-lora ID.
|
332 |
+
|
333 |
+
### How to use LCM-LoRA models offline
|
334 |
+
|
335 |
+
Please follow the steps to run LCM-LoRA models offline :
|
336 |
+
|
337 |
+
- In the settings ensure that "Use locally cached model" setting is ticked.
|
338 |
+
- Download the model for example `latent-consistency/lcm-lora-sdv1-5`
|
339 |
+
Run the following commands:
|
340 |
+
|
341 |
+
```
|
342 |
+
git lfs install
|
343 |
+
git clone https://huggingface.co/latent-consistency/lcm-lora-sdv1-5
|
344 |
+
```
|
345 |
+
|
346 |
+
Copy the cloned model folder path for example "D:\demo\lcm-lora-sdv1-5" and update the `configs/lcm-lora-models.txt` file as shown below :
|
347 |
+
|
348 |
+
```
|
349 |
+
D:\demo\lcm-lora-sdv1-5
|
350 |
+
latent-consistency/lcm-lora-sdxl
|
351 |
+
latent-consistency/lcm-lora-ssd-1b
|
352 |
+
```
|
353 |
+
|
354 |
+
- Open the app and select the newly added local folder in the combo box menu.
|
355 |
+
- That's all!
|
356 |
+
<a id="useloramodels"></a>
|
357 |
+
|
358 |
+
## How to use Lora models
|
359 |
+
|
360 |
+
Place your lora models in "lora_models" folder. Use LCM or LCM-Lora mode.
|
361 |
+
You can download lora model (.safetensors/Safetensor) from [Civitai](https://civitai.com/) or [Hugging Face](https://huggingface.co/)
|
362 |
+
E.g: [cutecartoonredmond](https://civitai.com/models/207984/cutecartoonredmond-15v-cute-cartoon-lora-for-liberteredmond-sd-15?modelVersionId=234192)
|
363 |
+
<a id="usecontrolnet"></a>
|
364 |
+
|
365 |
+
## ControlNet support
|
366 |
+
|
367 |
+
We can use ControlNet in LCM-LoRA mode.
|
368 |
+
|
369 |
+
Download ControlNet models from [ControlNet-v1-1](https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/tree/main).Download and place controlnet models in "controlnet_models" folder.
|
370 |
+
|
371 |
+
Use the medium size models (723 MB)(For example : <https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/blob/main/control_v11p_sd15_canny_fp16.safetensors>)
|
372 |
+
|
373 |
+
## Installation
|
374 |
+
|
375 |
+
### FastSD CPU on Windows
|
376 |
+
|
377 |
+
![FastSD CPU Desktop GUI Screenshot](https://raw.githubusercontent.com/rupeshs/fastsdcpu/main/docs/images/fastsdcpu-gui.jpg)
|
378 |
+
|
379 |
+
:exclamation:__You must have a working Python installation.(Recommended : Python 3.10 or 3.11 )__
|
380 |
+
|
381 |
+
To install FastSD CPU on Windows run the following steps :
|
382 |
+
|
383 |
+
- Clone/download this repo or download [release](https://github.com/rupeshs/fastsdcpu/releases).
|
384 |
+
- Double click `install.bat` (It will take some time to install,depending on your internet speed.)
|
385 |
+
- You can run in desktop GUI mode or web UI mode.
|
386 |
+
|
387 |
+
#### Desktop GUI
|
388 |
+
|
389 |
+
- To start desktop GUI double click `start.bat`
|
390 |
+
|
391 |
+
#### Web UI
|
392 |
+
|
393 |
+
- To start web UI double click `start-webui.bat`
|
394 |
+
|
395 |
+
### FastSD CPU on Linux
|
396 |
+
|
397 |
+
:exclamation:__Ensure that you have Python 3.9 or 3.10 or 3.11 version installed.__
|
398 |
+
|
399 |
+
- Clone/download this repo or download [release](https://github.com/rupeshs/fastsdcpu/releases).
|
400 |
+
- In the terminal, enter into fastsdcpu directory
|
401 |
+
- Run the following command
|
402 |
+
|
403 |
+
`chmod +x install.sh`
|
404 |
+
|
405 |
+
`./install.sh`
|
406 |
+
|
407 |
+
#### To start Desktop GUI
|
408 |
+
|
409 |
+
`./start.sh`
|
410 |
+
|
411 |
+
#### To start Web UI
|
412 |
+
|
413 |
+
`./start-webui.sh`
|
414 |
+
|
415 |
+
### FastSD CPU on Mac
|
416 |
+
|
417 |
+
![FastSD CPU running on Mac](https://raw.githubusercontent.com/rupeshs/fastsdcpu/main/docs/images/fastsdcpu-mac-gui.jpg)
|
418 |
+
|
419 |
+
:exclamation:__Ensure that you have Python 3.9 or 3.10 or 3.11 version installed.__
|
420 |
+
|
421 |
+
Run the following commands to install FastSD CPU on Mac :
|
422 |
+
|
423 |
+
- Clone/download this repo or download [release](https://github.com/rupeshs/fastsdcpu/releases).
|
424 |
+
- In the terminal, enter into fastsdcpu directory
|
425 |
+
- Run the following command
|
426 |
+
|
427 |
+
`chmod +x install-mac.sh`
|
428 |
+
|
429 |
+
`./install-mac.sh`
|
430 |
+
|
431 |
+
#### To start Desktop GUI
|
432 |
+
|
433 |
+
`./start.sh`
|
434 |
+
|
435 |
+
#### To start Web UI
|
436 |
+
|
437 |
+
`./start-webui.sh`
|
438 |
+
|
439 |
+
Thanks [Autantpourmoi](https://github.com/Autantpourmoi) for Mac testing.
|
440 |
+
|
441 |
+
:exclamation:We don't support OpenVINO on Mac (M1/M2/M3 chips, but *does* work on Intel chips).
|
442 |
+
|
443 |
+
If you want to increase image generation speed on Mac(M1/M2 chip) try this:
|
444 |
+
|
445 |
+
`export DEVICE=mps` and start app `start.sh`
|
446 |
+
|
447 |
+
#### Web UI screenshot
|
448 |
+
|
449 |
+
![FastSD CPU WebUI Screenshot](https://raw.githubusercontent.com/rupeshs/fastsdcpu/main/docs/images/fastcpu-webui.png)
|
450 |
+
|
451 |
+
### Google Colab
|
452 |
+
|
453 |
+
Due to the limitation of using CPU/OpenVINO inside colab, we are using GPU with colab.
|
454 |
+
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1SuAqskB-_gjWLYNRFENAkIXZ1aoyINqL?usp=sharing)
|
455 |
+
|
456 |
+
### CLI mode (Advanced users)
|
457 |
+
|
458 |
+
![FastSD CPU CLI Screenshot](https://raw.githubusercontent.com/rupeshs/fastsdcpu/main/docs/images/fastcpu-cli.png)
|
459 |
+
|
460 |
+
Open the terminal and enter into fastsdcpu folder.
|
461 |
+
Activate virtual environment using the command:
|
462 |
+
|
463 |
+
##### Windows users
|
464 |
+
|
465 |
+
(Suppose FastSD CPU available in the directory "D:\fastsdcpu")
|
466 |
+
`D:\fastsdcpu\env\Scripts\activate.bat`
|
467 |
+
|
468 |
+
##### Linux users
|
469 |
+
|
470 |
+
`source env/bin/activate`
|
471 |
+
|
472 |
+
Start CLI `src/app.py -h`
|
473 |
+
|
474 |
+
<a id="android"></a>
|
475 |
+
|
476 |
+
## Android (Termux + PRoot)
|
477 |
+
|
478 |
+
FastSD CPU running on Google Pixel 7 Pro.
|
479 |
+
|
480 |
+
![FastSD CPU Android Termux Screenshot](https://raw.githubusercontent.com/rupeshs/fastsdcpu/main/docs/images/fastsdcpu-android-termux-pixel7.png)
|
481 |
+
|
482 |
+
### 1. Prerequisites
|
483 |
+
|
484 |
+
First you have to [install Termux](https://wiki.termux.com/wiki/Installing_from_F-Droid) and [install PRoot](https://wiki.termux.com/wiki/PRoot). Then install and login to Ubuntu in PRoot.
|
485 |
+
|
486 |
+
### 2. Install FastSD CPU
|
487 |
+
|
488 |
+
Run the following command to install without Qt GUI.
|
489 |
+
|
490 |
+
`proot-distro login ubuntu`
|
491 |
+
|
492 |
+
`./install.sh --disable-gui`
|
493 |
+
|
494 |
+
After the installation you can use WebUi.
|
495 |
+
|
496 |
+
`./start-webui.sh`
|
497 |
+
|
498 |
+
Note : If you get `libgl.so.1` import error run `apt-get install ffmpeg`.
|
499 |
+
|
500 |
+
Thanks [patienx](https://github.com/patientx) for this guide [Step by step guide to installing FASTSDCPU on ANDROID](https://github.com/rupeshs/fastsdcpu/discussions/123)
|
501 |
+
|
502 |
+
Another step by step guide to run FastSD on Android is [here](https://nolowiz.com/how-to-install-and-run-fastsd-cpu-on-android-temux-step-by-step-guide/)
|
503 |
+
|
504 |
+
<a id="raspberry"></a>
|
505 |
+
|
506 |
+
## Raspberry PI 4 support
|
507 |
+
|
508 |
+
Thanks [WGNW_MGM] for Raspberry PI 4 testing.FastSD CPU worked without problems.
|
509 |
+
System configuration - Raspberry Pi 4 with 4GB RAM, 8GB of SWAP memory.
|
510 |
+
|
511 |
+
<a id="orangepi"></a>
|
512 |
+
|
513 |
+
## Orange Pi 5 support
|
514 |
+
|
515 |
+
Thanks [khanumballz](https://github.com/khanumballz) for testing FastSD CPU with Orange PI 5.
|
516 |
+
[Here is a video of FastSD CPU running on Orange Pi 5](https://www.youtube.com/watch?v=KEJiCU0aK8o).
|
517 |
+
|
518 |
+
<a id="apisupport"></a>
|
519 |
+
|
520 |
+
## API support
|
521 |
+
|
522 |
+
![FastSD CPU API documentation](https://raw.githubusercontent.com/rupeshs/fastsdcpu/add-basic-api-support/docs/images/fastsdcpu-api.png)
|
523 |
+
|
524 |
+
FastSD CPU supports basic API endpoints. Following API endpoints are available :
|
525 |
+
|
526 |
+
- /api/info - To get system information
|
527 |
+
- /api/config - Get configuration
|
528 |
+
- /api/models - List all available models
|
529 |
+
- /api/generate - Generate images (Text to image,image to image)
|
530 |
+
|
531 |
+
To start FastAPI in webserver mode run:
|
532 |
+
``python src/app.py --api``
|
533 |
+
|
534 |
+
or use `start-webserver.sh` for Linux and `start-webserver.bat` for Windows.
|
535 |
+
|
536 |
+
Access API documentation locally at <http://localhost:8000/api/docs> .
|
537 |
+
|
538 |
+
Generated image is JPEG image encoded as base64 string.
|
539 |
+
In the image-to-image mode input image should be encoded as base64 string.
|
540 |
+
|
541 |
+
To generate an image a minimal request `POST /api/generate` with body :
|
542 |
+
|
543 |
+
```
|
544 |
+
{
|
545 |
+
"prompt": "a cute cat",
|
546 |
+
"use_openvino": true
|
547 |
+
}
|
548 |
+
```
|
549 |
+
|
550 |
+
## Known issues
|
551 |
+
|
552 |
+
- TAESD will not work with OpenVINO image to image workflow
|
553 |
+
|
554 |
+
## License
|
555 |
+
|
556 |
+
The fastsdcpu project is available as open source under the terms of the [MIT license](https://github.com/rupeshs/fastsdcpu/blob/main/LICENSE)
|
557 |
+
|
558 |
+
## Disclaimer
|
559 |
+
|
560 |
+
Users are granted the freedom to create images using this tool, but they are obligated to comply with local laws and utilize it responsibly. The developers will not assume any responsibility for potential misuse by users.
|
561 |
+
|
562 |
+
## Contributors
|
563 |
+
|
564 |
+
<a href="https://github.com/rupeshs/fastsdcpu/graphs/contributors">
|
565 |
+
<img src="https://contrib.rocks/image?repo=rupeshs/fastsdcpu" />
|
566 |
+
</a>
|
SDXL-Turbo-LICENSE.TXT
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
STABILITY AI NON-COMMERCIAL RESEARCH COMMUNITY LICENSE AGREEMENT
|
2 |
+
Dated: November 28, 2023
|
3 |
+
|
4 |
+
|
5 |
+
By using or distributing any portion or element of the Models, Software, Software Products or Derivative Works, you agree to be bound by this Agreement.
|
6 |
+
|
7 |
+
|
8 |
+
"Agreement" means this Stable Non-Commercial Research Community License Agreement.
|
9 |
+
|
10 |
+
|
11 |
+
“AUP” means the Stability AI Acceptable Use Policy available at https://stability.ai/use-policy, as may be updated from time to time.
|
12 |
+
|
13 |
+
|
14 |
+
"Derivative Work(s)” means (a) any derivative work of the Software Products as recognized by U.S. copyright laws and (b) any modifications to a Model, and any other model created which is based on or derived from the Model or the Model’s output. For clarity, Derivative Works do not include the output of any Model.
|
15 |
+
|
16 |
+
|
17 |
+
“Documentation” means any specifications, manuals, documentation, and other written information provided by Stability AI related to the Software.
|
18 |
+
|
19 |
+
|
20 |
+
"Licensee" or "you" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity's behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.
|
21 |
+
|
22 |
+
|
23 |
+
“Model(s)" means, collectively, Stability AI’s proprietary models and algorithms, including machine-learning models, trained model weights and other elements of the foregoing, made available under this Agreement.
|
24 |
+
|
25 |
+
|
26 |
+
“Non-Commercial Uses” means exercising any of the rights granted herein for the purpose of research or non-commercial purposes. Non-Commercial Uses does not include any production use of the Software Products or any Derivative Works.
|
27 |
+
|
28 |
+
|
29 |
+
"Stability AI" or "we" means Stability AI Ltd. and its affiliates.
|
30 |
+
|
31 |
+
"Software" means Stability AI’s proprietary software made available under this Agreement.
|
32 |
+
|
33 |
+
|
34 |
+
“Software Products” means the Models, Software and Documentation, individually or in any combination.
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
1. License Rights and Redistribution.
|
39 |
+
|
40 |
+
a. Subject to your compliance with this Agreement, the AUP (which is hereby incorporated herein by reference), and the Documentation, Stability AI grants you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty free and limited license under Stability AI’s intellectual property or other rights owned or controlled by Stability AI embodied in the Software Products to use, reproduce, distribute, and create Derivative Works of, the Software Products, in each case for Non-Commercial Uses only.
|
41 |
+
|
42 |
+
b. You may not use the Software Products or Derivative Works to enable third parties to use the Software Products or Derivative Works as part of your hosted service or via your APIs, whether you are adding substantial additional functionality thereto or not. Merely distributing the Software Products or Derivative Works for download online without offering any related service (ex. by distributing the Models on HuggingFace) is not a violation of this subsection. If you wish to use the Software Products or any Derivative Works for commercial or production use or you wish to make the Software Products or any Derivative Works available to third parties via your hosted service or your APIs, contact Stability AI at https://stability.ai/contact.
|
43 |
+
|
44 |
+
c. If you distribute or make the Software Products, or any Derivative Works thereof, available to a third party, the Software Products, Derivative Works, or any portion thereof, respectively, will remain subject to this Agreement and you must (i) provide a copy of this Agreement to such third party, and (ii) retain the following attribution notice within a "Notice" text file distributed as a part of such copies: "This Stability AI Model is licensed under the Stability AI Non-Commercial Research Community License, Copyright (c) Stability AI Ltd. All Rights Reserved.” If you create a Derivative Work of a Software Product, you may add your own attribution notices to the Notice file included with the Software Product, provided that you clearly indicate which attributions apply to the Software Product and you must state in the NOTICE file that you changed the Software Product and how it was modified.
|
45 |
+
|
46 |
+
2. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE SOFTWARE PRODUCTS AND ANY OUTPUT AND RESULTS THERE FROM ARE PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE SOFTWARE PRODUCTS, DERIVATIVE WORKS OR ANY OUTPUT OR RESULTS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE SOFTWARE PRODUCTS, DERIVATIVE WORKS AND ANY OUTPUT AND RESULTS.
|
47 |
+
|
48 |
+
3. Limitation of Liability. IN NO EVENT WILL STABILITY AI OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF STABILITY AI OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
|
49 |
+
|
50 |
+
4. Intellectual Property.
|
51 |
+
|
52 |
+
a. No trademark licenses are granted under this Agreement, and in connection with the Software Products or Derivative Works, neither Stability AI nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Software Products or Derivative Works.
|
53 |
+
|
54 |
+
b. Subject to Stability AI’s ownership of the Software Products and Derivative Works made by or for Stability AI, with respect to any Derivative Works that are made by you, as between you and Stability AI, you are and will be the owner of such Derivative Works
|
55 |
+
|
56 |
+
c. If you institute litigation or other proceedings against Stability AI (including a cross-claim or counterclaim in a lawsuit) alleging that the Software Products, Derivative Works or associated outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Stability AI from and against any claim by any third party arising out of or related to your use or distribution of the Software Products or Derivative Works in violation of this Agreement.
|
57 |
+
|
58 |
+
5. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Software Products and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Stability AI may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of any Software Products or Derivative Works. Sections 2-4 shall survive the termination of this Agreement.
|
benchmark-openvino.bat
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
@echo off
|
2 |
+
setlocal
|
3 |
+
|
4 |
+
set "PYTHON_COMMAND=python"
|
5 |
+
|
6 |
+
call python --version > nul 2>&1
|
7 |
+
if %errorlevel% equ 0 (
|
8 |
+
echo Python command check :OK
|
9 |
+
) else (
|
10 |
+
echo "Error: Python command not found, please install Python (Recommended : Python 3.10 or Python 3.11) and try again"
|
11 |
+
pause
|
12 |
+
exit /b 1
|
13 |
+
|
14 |
+
)
|
15 |
+
|
16 |
+
:check_python_version
|
17 |
+
for /f "tokens=2" %%I in ('%PYTHON_COMMAND% --version 2^>^&1') do (
|
18 |
+
set "python_version=%%I"
|
19 |
+
)
|
20 |
+
|
21 |
+
echo Python version: %python_version%
|
22 |
+
|
23 |
+
call "%~dp0env\Scripts\activate.bat" && %PYTHON_COMMAND% src/app.py -b --use_openvino --openvino_lcm_model_id "rupeshs/sd-turbo-openvino"
|
benchmark.bat
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
@echo off
|
2 |
+
setlocal
|
3 |
+
|
4 |
+
set "PYTHON_COMMAND=python"
|
5 |
+
|
6 |
+
call python --version > nul 2>&1
|
7 |
+
if %errorlevel% equ 0 (
|
8 |
+
echo Python command check :OK
|
9 |
+
) else (
|
10 |
+
echo "Error: Python command not found, please install Python (Recommended : Python 3.10 or Python 3.11) and try again"
|
11 |
+
pause
|
12 |
+
exit /b 1
|
13 |
+
|
14 |
+
)
|
15 |
+
|
16 |
+
:check_python_version
|
17 |
+
for /f "tokens=2" %%I in ('%PYTHON_COMMAND% --version 2^>^&1') do (
|
18 |
+
set "python_version=%%I"
|
19 |
+
)
|
20 |
+
|
21 |
+
echo Python version: %python_version%
|
22 |
+
|
23 |
+
call "%~dp0env\Scripts\activate.bat" && %PYTHON_COMMAND% src/app.py -b
|
configs/lcm-lora-models.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
latent-consistency/lcm-lora-sdv1-5
|
2 |
+
latent-consistency/lcm-lora-sdxl
|
3 |
+
latent-consistency/lcm-lora-ssd-1b
|
4 |
+
rupeshs/hypersd-sd1-5-1-step-lora
|
configs/lcm-models.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
stabilityai/sd-turbo
|
2 |
+
rupeshs/sdxs-512-0.9-orig-vae
|
3 |
+
rupeshs/hyper-sd-sdxl-1-step
|
4 |
+
rupeshs/SDXL-Lightning-2steps
|
5 |
+
stabilityai/sdxl-turbo
|
6 |
+
SimianLuo/LCM_Dreamshaper_v7
|
7 |
+
latent-consistency/lcm-sdxl
|
8 |
+
latent-consistency/lcm-ssd-1b
|
configs/openvino-lcm-models.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
rupeshs/sd-turbo-openvino
|
2 |
+
rupeshs/sdxs-512-0.9-openvino
|
3 |
+
rupeshs/hyper-sd-sdxl-1-step-openvino-int8
|
4 |
+
rupeshs/SDXL-Lightning-2steps-openvino-int8
|
5 |
+
rupeshs/sdxl-turbo-openvino-int8
|
6 |
+
rupeshs/LCM-dreamshaper-v7-openvino
|
7 |
+
Disty0/LCM_SoteMix
|
8 |
+
rupeshs/FLUX.1-schnell-openvino-int4
|
configs/stable-diffusion-models.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Lykon/dreamshaper-8
|
2 |
+
Fictiverse/Stable_Diffusion_PaperCut_Model
|
3 |
+
stabilityai/stable-diffusion-xl-base-1.0
|
4 |
+
runwayml/stable-diffusion-v1-5
|
5 |
+
segmind/SSD-1B
|
6 |
+
stablediffusionapi/anything-v5
|
7 |
+
prompthero/openjourney-v4
|
controlnet_models/Readme.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
Place your ControlNet models in this folder.
|
2 |
+
You can download controlnet model (.safetensors) from https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/tree/main
|
3 |
+
E.g: https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/blob/main/control_v11p_sd15_canny_fp16.safetensors
|
docs/images/2steps-inference.jpg
ADDED
docs/images/fastcpu-cli.png
ADDED
docs/images/fastcpu-webui.png
ADDED
docs/images/fastsdcpu-android-termux-pixel7.png
ADDED
docs/images/fastsdcpu-api.png
ADDED
docs/images/fastsdcpu-gui.jpg
ADDED
docs/images/fastsdcpu-mac-gui.jpg
ADDED
docs/images/fastsdcpu-screenshot.png
ADDED
docs/images/fastsdcpu-webui.png
ADDED
docs/images/fastsdcpu_flux_on_cpu.png
ADDED
install-mac.sh
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
echo Starting FastSD CPU env installation...
|
3 |
+
set -e
|
4 |
+
PYTHON_COMMAND="python3"
|
5 |
+
|
6 |
+
if ! command -v python3 &>/dev/null; then
|
7 |
+
if ! command -v python &>/dev/null; then
|
8 |
+
echo "Error: Python not found, please install python 3.8 or higher and try again"
|
9 |
+
exit 1
|
10 |
+
fi
|
11 |
+
fi
|
12 |
+
|
13 |
+
if command -v python &>/dev/null; then
|
14 |
+
PYTHON_COMMAND="python"
|
15 |
+
fi
|
16 |
+
|
17 |
+
echo "Found $PYTHON_COMMAND command"
|
18 |
+
|
19 |
+
python_version=$($PYTHON_COMMAND --version 2>&1 | awk '{print $2}')
|
20 |
+
echo "Python version : $python_version"
|
21 |
+
|
22 |
+
BASEDIR=$(pwd)
|
23 |
+
|
24 |
+
$PYTHON_COMMAND -m venv "$BASEDIR/env"
|
25 |
+
# shellcheck disable=SC1091
|
26 |
+
source "$BASEDIR/env/bin/activate"
|
27 |
+
pip install torch==2.2.2
|
28 |
+
pip install -r "$BASEDIR/requirements.txt"
|
29 |
+
chmod +x "start.sh"
|
30 |
+
chmod +x "start-webui.sh"
|
31 |
+
read -n1 -r -p "FastSD CPU installation completed,press any key to continue..." key
|
install.bat
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
@echo off
|
3 |
+
setlocal
|
4 |
+
echo Starting FastSD CPU env installation...
|
5 |
+
|
6 |
+
set "PYTHON_COMMAND=python"
|
7 |
+
|
8 |
+
call python --version > nul 2>&1
|
9 |
+
if %errorlevel% equ 0 (
|
10 |
+
echo Python command check :OK
|
11 |
+
) else (
|
12 |
+
echo "Error: Python command not found,please install Python(Recommended : Python 3.10 or Python 3.11) and try again."
|
13 |
+
pause
|
14 |
+
exit /b 1
|
15 |
+
|
16 |
+
)
|
17 |
+
|
18 |
+
:check_python_version
|
19 |
+
for /f "tokens=2" %%I in ('%PYTHON_COMMAND% --version 2^>^&1') do (
|
20 |
+
set "python_version=%%I"
|
21 |
+
)
|
22 |
+
|
23 |
+
echo Python version: %python_version%
|
24 |
+
|
25 |
+
%PYTHON_COMMAND% -m venv "%~dp0env"
|
26 |
+
call "%~dp0env\Scripts\activate.bat" && pip install torch==2.2.2 --index-url https://download.pytorch.org/whl/cpu
|
27 |
+
call "%~dp0env\Scripts\activate.bat" && pip install -r "%~dp0requirements.txt"
|
28 |
+
echo FastSD CPU env installation completed.
|
29 |
+
pause
|
install.sh
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
echo Starting FastSD CPU env installation...
|
3 |
+
set -e
|
4 |
+
PYTHON_COMMAND="python3"
|
5 |
+
|
6 |
+
if ! command -v python3 &>/dev/null; then
|
7 |
+
if ! command -v python &>/dev/null; then
|
8 |
+
echo "Error: Python not found, please install python 3.8 or higher and try again"
|
9 |
+
exit 1
|
10 |
+
fi
|
11 |
+
fi
|
12 |
+
|
13 |
+
if command -v python &>/dev/null; then
|
14 |
+
PYTHON_COMMAND="python"
|
15 |
+
fi
|
16 |
+
|
17 |
+
echo "Found $PYTHON_COMMAND command"
|
18 |
+
|
19 |
+
python_version=$($PYTHON_COMMAND --version 2>&1 | awk '{print $2}')
|
20 |
+
echo "Python version : $python_version"
|
21 |
+
|
22 |
+
BASEDIR=$(pwd)
|
23 |
+
|
24 |
+
$PYTHON_COMMAND -m venv "$BASEDIR/env"
|
25 |
+
# shellcheck disable=SC1091
|
26 |
+
source "$BASEDIR/env/bin/activate"
|
27 |
+
pip install torch==2.2.2 --index-url https://download.pytorch.org/whl/cpu
|
28 |
+
if [[ "$1" == "--disable-gui" ]]; then
|
29 |
+
#! For termux , we don't need Qt based GUI
|
30 |
+
packages="$(grep -v "^ *#\|^PyQt5" requirements.txt | grep .)"
|
31 |
+
# shellcheck disable=SC2086
|
32 |
+
pip install $packages
|
33 |
+
else
|
34 |
+
pip install -r "$BASEDIR/requirements.txt"
|
35 |
+
fi
|
36 |
+
|
37 |
+
chmod +x "start.sh"
|
38 |
+
chmod +x "start-webui.sh"
|
39 |
+
read -n1 -r -p "FastSD CPU installation completed,press any key to continue..." key
|
lora_models/Readme.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
Place your lora models in this folder.
|
2 |
+
You can download lora model (.safetensors/Safetensor) from Civitai (https://civitai.com/) or Hugging Face(https://huggingface.co/)
|
3 |
+
E.g: https://civitai.com/models/207984/cutecartoonredmond-15v-cute-cartoon-lora-for-liberteredmond-sd-15?modelVersionId=234192
|
requirements.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.33.0
|
2 |
+
diffusers==0.30.0
|
3 |
+
transformers==4.41.2
|
4 |
+
PyQt5
|
5 |
+
Pillow==9.4.0
|
6 |
+
openvino==2024.3.0
|
7 |
+
optimum-intel==1.18.2
|
8 |
+
onnx==1.16.0
|
9 |
+
onnxruntime==1.17.3
|
10 |
+
pydantic==2.4.2
|
11 |
+
typing-extensions==4.8.0
|
12 |
+
pyyaml==6.0.1
|
13 |
+
gradio==4.23.0
|
14 |
+
peft==0.6.1
|
15 |
+
opencv-python==4.8.1.78
|
16 |
+
omegaconf==2.3.0
|
17 |
+
controlnet-aux==0.0.7
|
18 |
+
mediapipe==0.10.9
|
19 |
+
tomesd==0.1.3
|
src/__init__.py
ADDED
File without changes
|
src/app.py
ADDED
@@ -0,0 +1,534 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
|
4 |
+
import constants
|
5 |
+
from backend.controlnet import controlnet_settings_from_dict
|
6 |
+
from backend.models.gen_images import ImageFormat
|
7 |
+
from backend.models.lcmdiffusion_setting import DiffusionTask
|
8 |
+
from backend.upscale.tiled_upscale import generate_upscaled_image
|
9 |
+
from constants import APP_VERSION, DEVICE
|
10 |
+
from frontend.webui.image_variations_ui import generate_image_variations
|
11 |
+
from models.interface_types import InterfaceType
|
12 |
+
from paths import FastStableDiffusionPaths
|
13 |
+
from PIL import Image
|
14 |
+
from state import get_context, get_settings
|
15 |
+
from utils import show_system_info
|
16 |
+
from backend.device import get_device_name
|
17 |
+
|
18 |
+
parser = ArgumentParser(description=f"FAST SD CPU {constants.APP_VERSION}")
|
19 |
+
parser.add_argument(
|
20 |
+
"-s",
|
21 |
+
"--share",
|
22 |
+
action="store_true",
|
23 |
+
help="Create sharable link(Web UI)",
|
24 |
+
required=False,
|
25 |
+
)
|
26 |
+
group = parser.add_mutually_exclusive_group(required=False)
|
27 |
+
group.add_argument(
|
28 |
+
"-g",
|
29 |
+
"--gui",
|
30 |
+
action="store_true",
|
31 |
+
help="Start desktop GUI",
|
32 |
+
)
|
33 |
+
group.add_argument(
|
34 |
+
"-w",
|
35 |
+
"--webui",
|
36 |
+
action="store_true",
|
37 |
+
help="Start Web UI",
|
38 |
+
)
|
39 |
+
group.add_argument(
|
40 |
+
"-a",
|
41 |
+
"--api",
|
42 |
+
action="store_true",
|
43 |
+
help="Start Web API server",
|
44 |
+
)
|
45 |
+
group.add_argument(
|
46 |
+
"-r",
|
47 |
+
"--realtime",
|
48 |
+
action="store_true",
|
49 |
+
help="Start realtime inference UI(experimental)",
|
50 |
+
)
|
51 |
+
group.add_argument(
|
52 |
+
"-v",
|
53 |
+
"--version",
|
54 |
+
action="store_true",
|
55 |
+
help="Version",
|
56 |
+
)
|
57 |
+
|
58 |
+
parser.add_argument(
|
59 |
+
"-b",
|
60 |
+
"--benchmark",
|
61 |
+
action="store_true",
|
62 |
+
help="Run inference benchmark on the selected device",
|
63 |
+
)
|
64 |
+
parser.add_argument(
|
65 |
+
"--lcm_model_id",
|
66 |
+
type=str,
|
67 |
+
help="Model ID or path,Default stabilityai/sd-turbo",
|
68 |
+
default="stabilityai/sd-turbo",
|
69 |
+
)
|
70 |
+
parser.add_argument(
|
71 |
+
"--openvino_lcm_model_id",
|
72 |
+
type=str,
|
73 |
+
help="OpenVINO Model ID or path,Default rupeshs/sd-turbo-openvino",
|
74 |
+
default="rupeshs/sd-turbo-openvino",
|
75 |
+
)
|
76 |
+
parser.add_argument(
|
77 |
+
"--prompt",
|
78 |
+
type=str,
|
79 |
+
help="Describe the image you want to generate",
|
80 |
+
default="",
|
81 |
+
)
|
82 |
+
parser.add_argument(
|
83 |
+
"--negative_prompt",
|
84 |
+
type=str,
|
85 |
+
help="Describe what you want to exclude from the generation",
|
86 |
+
default="",
|
87 |
+
)
|
88 |
+
parser.add_argument(
|
89 |
+
"--image_height",
|
90 |
+
type=int,
|
91 |
+
help="Height of the image",
|
92 |
+
default=512,
|
93 |
+
)
|
94 |
+
parser.add_argument(
|
95 |
+
"--image_width",
|
96 |
+
type=int,
|
97 |
+
help="Width of the image",
|
98 |
+
default=512,
|
99 |
+
)
|
100 |
+
parser.add_argument(
|
101 |
+
"--inference_steps",
|
102 |
+
type=int,
|
103 |
+
help="Number of steps,default : 1",
|
104 |
+
default=1,
|
105 |
+
)
|
106 |
+
parser.add_argument(
|
107 |
+
"--guidance_scale",
|
108 |
+
type=float,
|
109 |
+
help="Guidance scale,default : 1.0",
|
110 |
+
default=1.0,
|
111 |
+
)
|
112 |
+
|
113 |
+
parser.add_argument(
|
114 |
+
"--number_of_images",
|
115 |
+
type=int,
|
116 |
+
help="Number of images to generate ,default : 1",
|
117 |
+
default=1,
|
118 |
+
)
|
119 |
+
parser.add_argument(
|
120 |
+
"--seed",
|
121 |
+
type=int,
|
122 |
+
help="Seed,default : -1 (disabled) ",
|
123 |
+
default=-1,
|
124 |
+
)
|
125 |
+
parser.add_argument(
|
126 |
+
"--use_openvino",
|
127 |
+
action="store_true",
|
128 |
+
help="Use OpenVINO model",
|
129 |
+
)
|
130 |
+
|
131 |
+
parser.add_argument(
|
132 |
+
"--use_offline_model",
|
133 |
+
action="store_true",
|
134 |
+
help="Use offline model",
|
135 |
+
)
|
136 |
+
parser.add_argument(
|
137 |
+
"--clip_skip",
|
138 |
+
type=int,
|
139 |
+
help="CLIP Skip (1-12), default : 1 (disabled) ",
|
140 |
+
default=1,
|
141 |
+
)
|
142 |
+
parser.add_argument(
|
143 |
+
"--token_merging",
|
144 |
+
type=float,
|
145 |
+
help="Token merging scale, 0.0 - 1.0, default : 0.0",
|
146 |
+
default=0.0,
|
147 |
+
)
|
148 |
+
|
149 |
+
parser.add_argument(
|
150 |
+
"--use_safety_checker",
|
151 |
+
action="store_true",
|
152 |
+
help="Use safety checker",
|
153 |
+
)
|
154 |
+
parser.add_argument(
|
155 |
+
"--use_lcm_lora",
|
156 |
+
action="store_true",
|
157 |
+
help="Use LCM-LoRA",
|
158 |
+
)
|
159 |
+
parser.add_argument(
|
160 |
+
"--base_model_id",
|
161 |
+
type=str,
|
162 |
+
help="LCM LoRA base model ID,Default Lykon/dreamshaper-8",
|
163 |
+
default="Lykon/dreamshaper-8",
|
164 |
+
)
|
165 |
+
parser.add_argument(
|
166 |
+
"--lcm_lora_id",
|
167 |
+
type=str,
|
168 |
+
help="LCM LoRA model ID,Default latent-consistency/lcm-lora-sdv1-5",
|
169 |
+
default="latent-consistency/lcm-lora-sdv1-5",
|
170 |
+
)
|
171 |
+
parser.add_argument(
|
172 |
+
"-i",
|
173 |
+
"--interactive",
|
174 |
+
action="store_true",
|
175 |
+
help="Interactive CLI mode",
|
176 |
+
)
|
177 |
+
parser.add_argument(
|
178 |
+
"-t",
|
179 |
+
"--use_tiny_auto_encoder",
|
180 |
+
action="store_true",
|
181 |
+
help="Use tiny auto encoder for SD (TAESD)",
|
182 |
+
)
|
183 |
+
parser.add_argument(
|
184 |
+
"-f",
|
185 |
+
"--file",
|
186 |
+
type=str,
|
187 |
+
help="Input image for img2img mode",
|
188 |
+
default="",
|
189 |
+
)
|
190 |
+
parser.add_argument(
|
191 |
+
"--img2img",
|
192 |
+
action="store_true",
|
193 |
+
help="img2img mode; requires input file via -f argument",
|
194 |
+
)
|
195 |
+
parser.add_argument(
|
196 |
+
"--batch_count",
|
197 |
+
type=int,
|
198 |
+
help="Number of sequential generations",
|
199 |
+
default=1,
|
200 |
+
)
|
201 |
+
parser.add_argument(
|
202 |
+
"--strength",
|
203 |
+
type=float,
|
204 |
+
help="Denoising strength for img2img and Image variations",
|
205 |
+
default=0.3,
|
206 |
+
)
|
207 |
+
parser.add_argument(
|
208 |
+
"--sdupscale",
|
209 |
+
action="store_true",
|
210 |
+
help="Tiled SD upscale,works only for the resolution 512x512,(2x upscale)",
|
211 |
+
)
|
212 |
+
parser.add_argument(
|
213 |
+
"--upscale",
|
214 |
+
action="store_true",
|
215 |
+
help="EDSR SD upscale ",
|
216 |
+
)
|
217 |
+
parser.add_argument(
|
218 |
+
"--custom_settings",
|
219 |
+
type=str,
|
220 |
+
help="JSON file containing custom generation settings",
|
221 |
+
default=None,
|
222 |
+
)
|
223 |
+
parser.add_argument(
|
224 |
+
"--usejpeg",
|
225 |
+
action="store_true",
|
226 |
+
help="Images will be saved as JPEG format",
|
227 |
+
)
|
228 |
+
parser.add_argument(
|
229 |
+
"--noimagesave",
|
230 |
+
action="store_true",
|
231 |
+
help="Disable image saving",
|
232 |
+
)
|
233 |
+
parser.add_argument(
|
234 |
+
"--lora",
|
235 |
+
type=str,
|
236 |
+
help="LoRA model full path e.g D:\lora_models\CuteCartoon15V-LiberteRedmodModel-Cartoon-CuteCartoonAF.safetensors",
|
237 |
+
default=None,
|
238 |
+
)
|
239 |
+
parser.add_argument(
|
240 |
+
"--lora_weight",
|
241 |
+
type=float,
|
242 |
+
help="LoRA adapter weight [0 to 1.0]",
|
243 |
+
default=0.5,
|
244 |
+
)
|
245 |
+
parser.add_argument(
|
246 |
+
"--port",
|
247 |
+
type=int,
|
248 |
+
help="Web server port",
|
249 |
+
default=8000,
|
250 |
+
)
|
251 |
+
|
252 |
+
args = parser.parse_args()
|
253 |
+
|
254 |
+
if args.version:
|
255 |
+
print(APP_VERSION)
|
256 |
+
exit()
|
257 |
+
|
258 |
+
# parser.print_help()
|
259 |
+
show_system_info()
|
260 |
+
print(f"Using device : {constants.DEVICE}")
|
261 |
+
|
262 |
+
if args.webui:
|
263 |
+
app_settings = get_settings()
|
264 |
+
else:
|
265 |
+
app_settings = get_settings()
|
266 |
+
|
267 |
+
print(f"Found {len(app_settings.lcm_models)} LCM models in config/lcm-models.txt")
|
268 |
+
print(
|
269 |
+
f"Found {len(app_settings.stable_diffsuion_models)} stable diffusion models in config/stable-diffusion-models.txt"
|
270 |
+
)
|
271 |
+
print(
|
272 |
+
f"Found {len(app_settings.lcm_lora_models)} LCM-LoRA models in config/lcm-lora-models.txt"
|
273 |
+
)
|
274 |
+
print(
|
275 |
+
f"Found {len(app_settings.openvino_lcm_models)} OpenVINO LCM models in config/openvino-lcm-models.txt"
|
276 |
+
)
|
277 |
+
|
278 |
+
if args.noimagesave:
|
279 |
+
app_settings.settings.generated_images.save_image = False
|
280 |
+
else:
|
281 |
+
app_settings.settings.generated_images.save_image = True
|
282 |
+
|
283 |
+
if not args.realtime:
|
284 |
+
# To minimize realtime mode dependencies
|
285 |
+
from backend.upscale.upscaler import upscale_image
|
286 |
+
from frontend.cli_interactive import interactive_mode
|
287 |
+
|
288 |
+
if args.gui:
|
289 |
+
from frontend.gui.ui import start_gui
|
290 |
+
|
291 |
+
print("Starting desktop GUI mode(Qt)")
|
292 |
+
start_gui(
|
293 |
+
[],
|
294 |
+
app_settings,
|
295 |
+
)
|
296 |
+
elif args.webui:
|
297 |
+
from frontend.webui.ui import start_webui
|
298 |
+
|
299 |
+
print("Starting web UI mode")
|
300 |
+
start_webui(
|
301 |
+
args.share,
|
302 |
+
)
|
303 |
+
elif args.realtime:
|
304 |
+
from frontend.webui.realtime_ui import start_realtime_text_to_image
|
305 |
+
|
306 |
+
print("Starting realtime text to image(EXPERIMENTAL)")
|
307 |
+
start_realtime_text_to_image(args.share)
|
308 |
+
elif args.api:
|
309 |
+
from backend.api.web import start_web_server
|
310 |
+
|
311 |
+
start_web_server(args.port)
|
312 |
+
|
313 |
+
else:
|
314 |
+
context = get_context(InterfaceType.CLI)
|
315 |
+
config = app_settings.settings
|
316 |
+
|
317 |
+
if args.use_openvino:
|
318 |
+
config.lcm_diffusion_setting.openvino_lcm_model_id = args.openvino_lcm_model_id
|
319 |
+
else:
|
320 |
+
config.lcm_diffusion_setting.lcm_model_id = args.lcm_model_id
|
321 |
+
|
322 |
+
config.lcm_diffusion_setting.prompt = args.prompt
|
323 |
+
config.lcm_diffusion_setting.negative_prompt = args.negative_prompt
|
324 |
+
config.lcm_diffusion_setting.image_height = args.image_height
|
325 |
+
config.lcm_diffusion_setting.image_width = args.image_width
|
326 |
+
config.lcm_diffusion_setting.guidance_scale = args.guidance_scale
|
327 |
+
config.lcm_diffusion_setting.number_of_images = args.number_of_images
|
328 |
+
config.lcm_diffusion_setting.inference_steps = args.inference_steps
|
329 |
+
config.lcm_diffusion_setting.strength = args.strength
|
330 |
+
config.lcm_diffusion_setting.seed = args.seed
|
331 |
+
config.lcm_diffusion_setting.use_openvino = args.use_openvino
|
332 |
+
config.lcm_diffusion_setting.use_tiny_auto_encoder = args.use_tiny_auto_encoder
|
333 |
+
config.lcm_diffusion_setting.use_lcm_lora = args.use_lcm_lora
|
334 |
+
config.lcm_diffusion_setting.lcm_lora.base_model_id = args.base_model_id
|
335 |
+
config.lcm_diffusion_setting.lcm_lora.lcm_lora_id = args.lcm_lora_id
|
336 |
+
config.lcm_diffusion_setting.diffusion_task = DiffusionTask.text_to_image.value
|
337 |
+
config.lcm_diffusion_setting.lora.enabled = False
|
338 |
+
config.lcm_diffusion_setting.lora.path = args.lora
|
339 |
+
config.lcm_diffusion_setting.lora.weight = args.lora_weight
|
340 |
+
config.lcm_diffusion_setting.lora.fuse = True
|
341 |
+
if config.lcm_diffusion_setting.lora.path:
|
342 |
+
config.lcm_diffusion_setting.lora.enabled = True
|
343 |
+
if args.usejpeg:
|
344 |
+
config.generated_images.format = ImageFormat.JPEG.value.upper()
|
345 |
+
if args.seed > -1:
|
346 |
+
config.lcm_diffusion_setting.use_seed = True
|
347 |
+
else:
|
348 |
+
config.lcm_diffusion_setting.use_seed = False
|
349 |
+
config.lcm_diffusion_setting.use_offline_model = args.use_offline_model
|
350 |
+
config.lcm_diffusion_setting.clip_skip = args.clip_skip
|
351 |
+
config.lcm_diffusion_setting.token_merging = args.token_merging
|
352 |
+
config.lcm_diffusion_setting.use_safety_checker = args.use_safety_checker
|
353 |
+
|
354 |
+
# Read custom settings from JSON file
|
355 |
+
custom_settings = {}
|
356 |
+
if args.custom_settings:
|
357 |
+
with open(args.custom_settings) as f:
|
358 |
+
custom_settings = json.load(f)
|
359 |
+
|
360 |
+
# Basic ControlNet settings; if ControlNet is enabled, an image is
|
361 |
+
# required even in txt2img mode
|
362 |
+
config.lcm_diffusion_setting.controlnet = None
|
363 |
+
controlnet_settings_from_dict(
|
364 |
+
config.lcm_diffusion_setting,
|
365 |
+
custom_settings,
|
366 |
+
)
|
367 |
+
|
368 |
+
# Interactive mode
|
369 |
+
if args.interactive:
|
370 |
+
# wrapper(interactive_mode, config, context)
|
371 |
+
config.lcm_diffusion_setting.lora.fuse = False
|
372 |
+
interactive_mode(config, context)
|
373 |
+
|
374 |
+
# Start of non-interactive CLI image generation
|
375 |
+
if args.img2img and args.file != "":
|
376 |
+
config.lcm_diffusion_setting.init_image = Image.open(args.file)
|
377 |
+
config.lcm_diffusion_setting.diffusion_task = DiffusionTask.image_to_image.value
|
378 |
+
elif args.img2img and args.file == "":
|
379 |
+
print("Error : You need to specify a file in img2img mode")
|
380 |
+
exit()
|
381 |
+
elif args.upscale and args.file == "" and args.custom_settings == None:
|
382 |
+
print("Error : You need to specify a file in SD upscale mode")
|
383 |
+
exit()
|
384 |
+
elif (
|
385 |
+
args.prompt == ""
|
386 |
+
and args.file == ""
|
387 |
+
and args.custom_settings == None
|
388 |
+
and not args.benchmark
|
389 |
+
):
|
390 |
+
print("Error : You need to provide a prompt")
|
391 |
+
exit()
|
392 |
+
|
393 |
+
if args.upscale:
|
394 |
+
# image = Image.open(args.file)
|
395 |
+
output_path = FastStableDiffusionPaths.get_upscale_filepath(
|
396 |
+
args.file,
|
397 |
+
2,
|
398 |
+
config.generated_images.format,
|
399 |
+
)
|
400 |
+
result = upscale_image(
|
401 |
+
context,
|
402 |
+
args.file,
|
403 |
+
output_path,
|
404 |
+
2,
|
405 |
+
)
|
406 |
+
# Perform Tiled SD upscale (EXPERIMENTAL)
|
407 |
+
elif args.sdupscale:
|
408 |
+
if args.use_openvino:
|
409 |
+
config.lcm_diffusion_setting.strength = 0.3
|
410 |
+
upscale_settings = None
|
411 |
+
if custom_settings != {}:
|
412 |
+
upscale_settings = custom_settings
|
413 |
+
filepath = args.file
|
414 |
+
output_format = config.generated_images.format
|
415 |
+
if upscale_settings:
|
416 |
+
filepath = upscale_settings["source_file"]
|
417 |
+
output_format = upscale_settings["output_format"].upper()
|
418 |
+
output_path = FastStableDiffusionPaths.get_upscale_filepath(
|
419 |
+
filepath,
|
420 |
+
2,
|
421 |
+
output_format,
|
422 |
+
)
|
423 |
+
|
424 |
+
generate_upscaled_image(
|
425 |
+
config,
|
426 |
+
filepath,
|
427 |
+
config.lcm_diffusion_setting.strength,
|
428 |
+
upscale_settings=upscale_settings,
|
429 |
+
context=context,
|
430 |
+
tile_overlap=32 if config.lcm_diffusion_setting.use_openvino else 16,
|
431 |
+
output_path=output_path,
|
432 |
+
image_format=output_format,
|
433 |
+
)
|
434 |
+
exit()
|
435 |
+
# If img2img argument is set and prompt is empty, use image variations mode
|
436 |
+
elif args.img2img and args.prompt == "":
|
437 |
+
for i in range(0, args.batch_count):
|
438 |
+
generate_image_variations(
|
439 |
+
config.lcm_diffusion_setting.init_image, args.strength
|
440 |
+
)
|
441 |
+
else:
|
442 |
+
|
443 |
+
if args.benchmark:
|
444 |
+
print("Initializing benchmark...")
|
445 |
+
bench_lcm_setting = config.lcm_diffusion_setting
|
446 |
+
bench_lcm_setting.prompt = "a cat"
|
447 |
+
bench_lcm_setting.use_tiny_auto_encoder = False
|
448 |
+
context.generate_text_to_image(
|
449 |
+
settings=config,
|
450 |
+
device=DEVICE,
|
451 |
+
)
|
452 |
+
latencies = []
|
453 |
+
|
454 |
+
print("Starting benchmark please wait...")
|
455 |
+
for _ in range(3):
|
456 |
+
context.generate_text_to_image(
|
457 |
+
settings=config,
|
458 |
+
device=DEVICE,
|
459 |
+
)
|
460 |
+
latencies.append(context.latency)
|
461 |
+
|
462 |
+
avg_latency = sum(latencies) / 3
|
463 |
+
|
464 |
+
bench_lcm_setting.use_tiny_auto_encoder = True
|
465 |
+
|
466 |
+
context.generate_text_to_image(
|
467 |
+
settings=config,
|
468 |
+
device=DEVICE,
|
469 |
+
)
|
470 |
+
latencies = []
|
471 |
+
for _ in range(3):
|
472 |
+
context.generate_text_to_image(
|
473 |
+
settings=config,
|
474 |
+
device=DEVICE,
|
475 |
+
)
|
476 |
+
latencies.append(context.latency)
|
477 |
+
|
478 |
+
avg_latency_taesd = sum(latencies) / 3
|
479 |
+
|
480 |
+
benchmark_name = ""
|
481 |
+
|
482 |
+
if config.lcm_diffusion_setting.use_openvino:
|
483 |
+
benchmark_name = "OpenVINO"
|
484 |
+
else:
|
485 |
+
benchmark_name = "PyTorch"
|
486 |
+
|
487 |
+
bench_model_id = ""
|
488 |
+
if bench_lcm_setting.use_openvino:
|
489 |
+
bench_model_id = bench_lcm_setting.openvino_lcm_model_id
|
490 |
+
elif bench_lcm_setting.use_lcm_lora:
|
491 |
+
bench_model_id = bench_lcm_setting.lcm_lora.base_model_id
|
492 |
+
else:
|
493 |
+
bench_model_id = bench_lcm_setting.lcm_model_id
|
494 |
+
|
495 |
+
benchmark_result = [
|
496 |
+
["Device", f"{DEVICE.upper()},{get_device_name()}"],
|
497 |
+
["Stable Diffusion Model", bench_model_id],
|
498 |
+
[
|
499 |
+
"Image Size ",
|
500 |
+
f"{bench_lcm_setting.image_width}x{bench_lcm_setting.image_height}",
|
501 |
+
],
|
502 |
+
[
|
503 |
+
"Inference Steps",
|
504 |
+
f"{bench_lcm_setting.inference_steps}",
|
505 |
+
],
|
506 |
+
[
|
507 |
+
"Benchmark Passes",
|
508 |
+
3,
|
509 |
+
],
|
510 |
+
[
|
511 |
+
"Average Latency",
|
512 |
+
f"{round(avg_latency,3)} sec",
|
513 |
+
],
|
514 |
+
[
|
515 |
+
"Average Latency(TAESD* enabled)",
|
516 |
+
f"{round(avg_latency_taesd,3)} sec",
|
517 |
+
],
|
518 |
+
]
|
519 |
+
print()
|
520 |
+
print(
|
521 |
+
f" FastSD Benchmark - {benchmark_name:8} "
|
522 |
+
)
|
523 |
+
print(f"-" * 80)
|
524 |
+
for benchmark in benchmark_result:
|
525 |
+
print(f"{benchmark[0]:35} - {benchmark[1]}")
|
526 |
+
print(f"-" * 80)
|
527 |
+
print("*TAESD - Tiny AutoEncoder for Stable Diffusion")
|
528 |
+
|
529 |
+
else:
|
530 |
+
for i in range(0, args.batch_count):
|
531 |
+
context.generate_text_to_image(
|
532 |
+
settings=config,
|
533 |
+
device=DEVICE,
|
534 |
+
)
|
src/app_settings.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yaml
|
2 |
+
from os import path, makedirs
|
3 |
+
from models.settings import Settings
|
4 |
+
from paths import FastStableDiffusionPaths
|
5 |
+
from utils import get_models_from_text_file
|
6 |
+
from constants import (
|
7 |
+
OPENVINO_LCM_MODELS_FILE,
|
8 |
+
LCM_LORA_MODELS_FILE,
|
9 |
+
SD_MODELS_FILE,
|
10 |
+
LCM_MODELS_FILE,
|
11 |
+
)
|
12 |
+
from copy import deepcopy
|
13 |
+
|
14 |
+
|
15 |
+
class AppSettings:
|
16 |
+
def __init__(self):
|
17 |
+
self.config_path = FastStableDiffusionPaths().get_app_settings_path()
|
18 |
+
self._stable_diffsuion_models = get_models_from_text_file(
|
19 |
+
FastStableDiffusionPaths().get_models_config_path(SD_MODELS_FILE)
|
20 |
+
)
|
21 |
+
self._lcm_lora_models = get_models_from_text_file(
|
22 |
+
FastStableDiffusionPaths().get_models_config_path(LCM_LORA_MODELS_FILE)
|
23 |
+
)
|
24 |
+
self._openvino_lcm_models = get_models_from_text_file(
|
25 |
+
FastStableDiffusionPaths().get_models_config_path(OPENVINO_LCM_MODELS_FILE)
|
26 |
+
)
|
27 |
+
self._lcm_models = get_models_from_text_file(
|
28 |
+
FastStableDiffusionPaths().get_models_config_path(LCM_MODELS_FILE)
|
29 |
+
)
|
30 |
+
self._config = None
|
31 |
+
|
32 |
+
@property
|
33 |
+
def settings(self):
|
34 |
+
return self._config
|
35 |
+
|
36 |
+
@property
|
37 |
+
def stable_diffsuion_models(self):
|
38 |
+
return self._stable_diffsuion_models
|
39 |
+
|
40 |
+
@property
|
41 |
+
def openvino_lcm_models(self):
|
42 |
+
return self._openvino_lcm_models
|
43 |
+
|
44 |
+
@property
|
45 |
+
def lcm_models(self):
|
46 |
+
return self._lcm_models
|
47 |
+
|
48 |
+
@property
|
49 |
+
def lcm_lora_models(self):
|
50 |
+
return self._lcm_lora_models
|
51 |
+
|
52 |
+
def load(self, skip_file=False):
|
53 |
+
if skip_file:
|
54 |
+
print("Skipping config file")
|
55 |
+
settings_dict = self._load_default()
|
56 |
+
self._config = Settings.model_validate(settings_dict)
|
57 |
+
else:
|
58 |
+
if not path.exists(self.config_path):
|
59 |
+
base_dir = path.dirname(self.config_path)
|
60 |
+
if not path.exists(base_dir):
|
61 |
+
makedirs(base_dir)
|
62 |
+
try:
|
63 |
+
print("Settings not found creating default settings")
|
64 |
+
with open(self.config_path, "w") as file:
|
65 |
+
yaml.dump(
|
66 |
+
self._load_default(),
|
67 |
+
file,
|
68 |
+
)
|
69 |
+
except Exception as ex:
|
70 |
+
print(f"Error in creating settings : {ex}")
|
71 |
+
exit()
|
72 |
+
try:
|
73 |
+
with open(self.config_path) as file:
|
74 |
+
settings_dict = yaml.safe_load(file)
|
75 |
+
self._config = Settings.model_validate(settings_dict)
|
76 |
+
except Exception as ex:
|
77 |
+
print(f"Error in loading settings : {ex}")
|
78 |
+
|
79 |
+
def save(self):
|
80 |
+
try:
|
81 |
+
with open(self.config_path, "w") as file:
|
82 |
+
tmp_cfg = deepcopy(self._config)
|
83 |
+
tmp_cfg.lcm_diffusion_setting.init_image = None
|
84 |
+
configurations = tmp_cfg.model_dump(
|
85 |
+
exclude=["init_image"],
|
86 |
+
)
|
87 |
+
if configurations:
|
88 |
+
yaml.dump(configurations, file)
|
89 |
+
except Exception as ex:
|
90 |
+
print(f"Error in saving settings : {ex}")
|
91 |
+
|
92 |
+
def _load_default(self) -> dict:
|
93 |
+
default_config = Settings()
|
94 |
+
return default_config.model_dump()
|
src/backend/__init__.py
ADDED
File without changes
|
src/backend/annotators/canny_control.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from backend.annotators.control_interface import ControlInterface
|
3 |
+
from cv2 import Canny
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
|
7 |
+
class CannyControl(ControlInterface):
|
8 |
+
def get_control_image(self, image: Image) -> Image:
|
9 |
+
low_threshold = 100
|
10 |
+
high_threshold = 200
|
11 |
+
image = np.array(image)
|
12 |
+
image = Canny(image, low_threshold, high_threshold)
|
13 |
+
image = image[:, :, None]
|
14 |
+
image = np.concatenate([image, image, image], axis=2)
|
15 |
+
return Image.fromarray(image)
|
src/backend/annotators/control_interface.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
|
6 |
+
class ControlInterface(ABC):
|
7 |
+
@abstractmethod
|
8 |
+
def get_control_image(
|
9 |
+
self,
|
10 |
+
image: Image,
|
11 |
+
) -> Image:
|
12 |
+
pass
|
src/backend/annotators/depth_control.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from backend.annotators.control_interface import ControlInterface
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import pipeline
|
5 |
+
|
6 |
+
|
7 |
+
class DepthControl(ControlInterface):
|
8 |
+
def get_control_image(self, image: Image) -> Image:
|
9 |
+
depth_estimator = pipeline("depth-estimation")
|
10 |
+
image = depth_estimator(image)["depth"]
|
11 |
+
image = np.array(image)
|
12 |
+
image = image[:, :, None]
|
13 |
+
image = np.concatenate([image, image, image], axis=2)
|
14 |
+
image = Image.fromarray(image)
|
15 |
+
return image
|
src/backend/annotators/image_control_factory.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from backend.annotators.canny_control import CannyControl
|
2 |
+
from backend.annotators.depth_control import DepthControl
|
3 |
+
from backend.annotators.lineart_control import LineArtControl
|
4 |
+
from backend.annotators.mlsd_control import MlsdControl
|
5 |
+
from backend.annotators.normal_control import NormalControl
|
6 |
+
from backend.annotators.pose_control import PoseControl
|
7 |
+
from backend.annotators.shuffle_control import ShuffleControl
|
8 |
+
from backend.annotators.softedge_control import SoftEdgeControl
|
9 |
+
|
10 |
+
|
11 |
+
class ImageControlFactory:
|
12 |
+
def create_control(self, controlnet_type: str):
|
13 |
+
if controlnet_type == "Canny":
|
14 |
+
return CannyControl()
|
15 |
+
elif controlnet_type == "Pose":
|
16 |
+
return PoseControl()
|
17 |
+
elif controlnet_type == "MLSD":
|
18 |
+
return MlsdControl()
|
19 |
+
elif controlnet_type == "Depth":
|
20 |
+
return DepthControl()
|
21 |
+
elif controlnet_type == "LineArt":
|
22 |
+
return LineArtControl()
|
23 |
+
elif controlnet_type == "Shuffle":
|
24 |
+
return ShuffleControl()
|
25 |
+
elif controlnet_type == "NormalBAE":
|
26 |
+
return NormalControl()
|
27 |
+
elif controlnet_type == "SoftEdge":
|
28 |
+
return SoftEdgeControl()
|
29 |
+
else:
|
30 |
+
print("Error: Control type not implemented!")
|
31 |
+
raise Exception("Error: Control type not implemented!")
|
src/backend/annotators/lineart_control.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from backend.annotators.control_interface import ControlInterface
|
3 |
+
from controlnet_aux import LineartDetector
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
|
7 |
+
class LineArtControl(ControlInterface):
|
8 |
+
def get_control_image(self, image: Image) -> Image:
|
9 |
+
processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
10 |
+
control_image = processor(image)
|
11 |
+
return control_image
|
src/backend/annotators/mlsd_control.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from backend.annotators.control_interface import ControlInterface
|
2 |
+
from controlnet_aux import MLSDdetector
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
|
6 |
+
class MlsdControl(ControlInterface):
|
7 |
+
def get_control_image(self, image: Image) -> Image:
|
8 |
+
mlsd = MLSDdetector.from_pretrained("lllyasviel/ControlNet")
|
9 |
+
image = mlsd(image)
|
10 |
+
return image
|
src/backend/annotators/normal_control.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from backend.annotators.control_interface import ControlInterface
|
2 |
+
from controlnet_aux import NormalBaeDetector
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
|
6 |
+
class NormalControl(ControlInterface):
|
7 |
+
def get_control_image(self, image: Image) -> Image:
|
8 |
+
processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
|
9 |
+
control_image = processor(image)
|
10 |
+
return control_image
|
src/backend/annotators/pose_control.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from backend.annotators.control_interface import ControlInterface
|
2 |
+
from controlnet_aux import OpenposeDetector
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
|
6 |
+
class PoseControl(ControlInterface):
|
7 |
+
def get_control_image(self, image: Image) -> Image:
|
8 |
+
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
9 |
+
image = openpose(image)
|
10 |
+
return image
|
src/backend/annotators/shuffle_control.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from backend.annotators.control_interface import ControlInterface
|
2 |
+
from controlnet_aux import ContentShuffleDetector
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
|
6 |
+
class ShuffleControl(ControlInterface):
|
7 |
+
def get_control_image(self, image: Image) -> Image:
|
8 |
+
shuffle_processor = ContentShuffleDetector()
|
9 |
+
image = shuffle_processor(image)
|
10 |
+
return image
|
src/backend/annotators/softedge_control.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from backend.annotators.control_interface import ControlInterface
|
2 |
+
from controlnet_aux import PidiNetDetector
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
|
6 |
+
class SoftEdgeControl(ControlInterface):
|
7 |
+
def get_control_image(self, image: Image) -> Image:
|
8 |
+
processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
|
9 |
+
control_image = processor(image)
|
10 |
+
return control_image
|
src/backend/api/models/response.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from pydantic import BaseModel
|
4 |
+
|
5 |
+
|
6 |
+
class StableDiffusionResponse(BaseModel):
|
7 |
+
"""
|
8 |
+
Stable diffusion response model
|
9 |
+
|
10 |
+
Attributes:
|
11 |
+
images (List[str]): List of JPEG image as base64 encoded
|
12 |
+
latency (float): Latency in seconds
|
13 |
+
"""
|
14 |
+
|
15 |
+
images: List[str]
|
16 |
+
latency: float
|
src/backend/api/web.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import platform
|
2 |
+
|
3 |
+
import uvicorn
|
4 |
+
from backend.api.models.response import StableDiffusionResponse
|
5 |
+
from backend.models.device import DeviceInfo
|
6 |
+
from backend.base64_image import base64_image_to_pil, pil_image_to_base64_str
|
7 |
+
from backend.device import get_device_name
|
8 |
+
from backend.models.lcmdiffusion_setting import DiffusionTask, LCMDiffusionSetting
|
9 |
+
from constants import APP_VERSION, DEVICE
|
10 |
+
from context import Context
|
11 |
+
from fastapi import FastAPI
|
12 |
+
from models.interface_types import InterfaceType
|
13 |
+
from state import get_settings
|
14 |
+
|
15 |
+
app_settings = get_settings()
|
16 |
+
app = FastAPI(
|
17 |
+
title="FastSD CPU",
|
18 |
+
description="Fast stable diffusion on CPU",
|
19 |
+
version=APP_VERSION,
|
20 |
+
license_info={
|
21 |
+
"name": "MIT",
|
22 |
+
"identifier": "MIT",
|
23 |
+
},
|
24 |
+
docs_url="/api/docs",
|
25 |
+
redoc_url="/api/redoc",
|
26 |
+
openapi_url="/api/openapi.json",
|
27 |
+
)
|
28 |
+
print(app_settings.settings.lcm_diffusion_setting)
|
29 |
+
|
30 |
+
context = Context(InterfaceType.API_SERVER)
|
31 |
+
|
32 |
+
|
33 |
+
@app.get("/api/")
|
34 |
+
async def root():
|
35 |
+
return {"message": "Welcome to FastSD CPU API"}
|
36 |
+
|
37 |
+
|
38 |
+
@app.get(
|
39 |
+
"/api/info",
|
40 |
+
description="Get system information",
|
41 |
+
summary="Get system information",
|
42 |
+
)
|
43 |
+
async def info():
|
44 |
+
device_info = DeviceInfo(
|
45 |
+
device_type=DEVICE,
|
46 |
+
device_name=get_device_name(),
|
47 |
+
os=platform.system(),
|
48 |
+
platform=platform.platform(),
|
49 |
+
processor=platform.processor(),
|
50 |
+
)
|
51 |
+
return device_info.model_dump()
|
52 |
+
|
53 |
+
|
54 |
+
@app.get(
|
55 |
+
"/api/config",
|
56 |
+
description="Get current configuration",
|
57 |
+
summary="Get configurations",
|
58 |
+
)
|
59 |
+
async def config():
|
60 |
+
return app_settings.settings
|
61 |
+
|
62 |
+
|
63 |
+
@app.get(
|
64 |
+
"/api/models",
|
65 |
+
description="Get available models",
|
66 |
+
summary="Get available models",
|
67 |
+
)
|
68 |
+
async def models():
|
69 |
+
return {
|
70 |
+
"lcm_lora_models": app_settings.lcm_lora_models,
|
71 |
+
"stable_diffusion": app_settings.stable_diffsuion_models,
|
72 |
+
"openvino_models": app_settings.openvino_lcm_models,
|
73 |
+
"lcm_models": app_settings.lcm_models,
|
74 |
+
}
|
75 |
+
|
76 |
+
|
77 |
+
@app.post(
|
78 |
+
"/api/generate",
|
79 |
+
description="Generate image(Text to image,Image to Image)",
|
80 |
+
summary="Generate image(Text to image,Image to Image)",
|
81 |
+
)
|
82 |
+
async def generate(diffusion_config: LCMDiffusionSetting) -> StableDiffusionResponse:
|
83 |
+
app_settings.settings.lcm_diffusion_setting = diffusion_config
|
84 |
+
if diffusion_config.diffusion_task == DiffusionTask.image_to_image:
|
85 |
+
app_settings.settings.lcm_diffusion_setting.init_image = base64_image_to_pil(
|
86 |
+
diffusion_config.init_image
|
87 |
+
)
|
88 |
+
|
89 |
+
images = context.generate_text_to_image(app_settings.settings)
|
90 |
+
|
91 |
+
images_base64 = [pil_image_to_base64_str(img) for img in images]
|
92 |
+
return StableDiffusionResponse(
|
93 |
+
latency=round(context.latency, 2),
|
94 |
+
images=images_base64,
|
95 |
+
)
|
96 |
+
|
97 |
+
|
98 |
+
def start_web_server(port: int = 8000):
|
99 |
+
uvicorn.run(
|
100 |
+
app,
|
101 |
+
host="0.0.0.0",
|
102 |
+
port=port,
|
103 |
+
)
|
src/backend/base64_image.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
from base64 import b64encode, b64decode
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
|
6 |
+
def pil_image_to_base64_str(
|
7 |
+
image: Image,
|
8 |
+
format: str = "JPEG",
|
9 |
+
) -> str:
|
10 |
+
buffer = BytesIO()
|
11 |
+
image.save(buffer, format=format)
|
12 |
+
buffer.seek(0)
|
13 |
+
img_base64 = b64encode(buffer.getvalue()).decode("utf-8")
|
14 |
+
return img_base64
|
15 |
+
|
16 |
+
|
17 |
+
def base64_image_to_pil(base64_str) -> Image:
|
18 |
+
image_data = b64decode(base64_str)
|
19 |
+
image_buffer = BytesIO(image_data)
|
20 |
+
image = Image.open(image_buffer)
|
21 |
+
return image
|
src/backend/controlnet.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from PIL import Image
|
3 |
+
from diffusers import ControlNetModel
|
4 |
+
from backend.models.lcmdiffusion_setting import (
|
5 |
+
DiffusionTask,
|
6 |
+
ControlNetSetting,
|
7 |
+
)
|
8 |
+
|
9 |
+
|
10 |
+
# Prepares ControlNet adapters for use with FastSD CPU
|
11 |
+
#
|
12 |
+
# This function loads the ControlNet adapters defined by the
|
13 |
+
# _lcm_diffusion_setting.controlnet_ object and returns a dictionary
|
14 |
+
# with the pipeline arguments required to use the loaded adapters
|
15 |
+
def load_controlnet_adapters(lcm_diffusion_setting) -> dict:
|
16 |
+
controlnet_args = {}
|
17 |
+
if (
|
18 |
+
lcm_diffusion_setting.controlnet is None
|
19 |
+
or not lcm_diffusion_setting.controlnet.enabled
|
20 |
+
):
|
21 |
+
return controlnet_args
|
22 |
+
|
23 |
+
logging.info("Loading ControlNet adapter")
|
24 |
+
controlnet_adapter = ControlNetModel.from_single_file(
|
25 |
+
lcm_diffusion_setting.controlnet.adapter_path,
|
26 |
+
# local_files_only=True,
|
27 |
+
use_safetensors=True,
|
28 |
+
)
|
29 |
+
controlnet_args["controlnet"] = controlnet_adapter
|
30 |
+
return controlnet_args
|
31 |
+
|
32 |
+
|
33 |
+
# Updates the ControlNet pipeline arguments to use for image generation
|
34 |
+
#
|
35 |
+
# This function uses the contents of the _lcm_diffusion_setting.controlnet_
|
36 |
+
# object to generate a dictionary with the corresponding pipeline arguments
|
37 |
+
# to be used for image generation; in particular, it sets the ControlNet control
|
38 |
+
# image and conditioning scale
|
39 |
+
def update_controlnet_arguments(lcm_diffusion_setting) -> dict:
|
40 |
+
controlnet_args = {}
|
41 |
+
if (
|
42 |
+
lcm_diffusion_setting.controlnet is None
|
43 |
+
or not lcm_diffusion_setting.controlnet.enabled
|
44 |
+
):
|
45 |
+
return controlnet_args
|
46 |
+
|
47 |
+
controlnet_args["controlnet_conditioning_scale"] = (
|
48 |
+
lcm_diffusion_setting.controlnet.conditioning_scale
|
49 |
+
)
|
50 |
+
if lcm_diffusion_setting.diffusion_task == DiffusionTask.text_to_image.value:
|
51 |
+
controlnet_args["image"] = lcm_diffusion_setting.controlnet._control_image
|
52 |
+
elif lcm_diffusion_setting.diffusion_task == DiffusionTask.image_to_image.value:
|
53 |
+
controlnet_args["control_image"] = (
|
54 |
+
lcm_diffusion_setting.controlnet._control_image
|
55 |
+
)
|
56 |
+
return controlnet_args
|
57 |
+
|
58 |
+
|
59 |
+
# Helper function to adjust ControlNet settings from a dictionary
|
60 |
+
def controlnet_settings_from_dict(
|
61 |
+
lcm_diffusion_setting,
|
62 |
+
dictionary,
|
63 |
+
) -> None:
|
64 |
+
if lcm_diffusion_setting is None or dictionary is None:
|
65 |
+
logging.error("Invalid arguments!")
|
66 |
+
return
|
67 |
+
if (
|
68 |
+
"controlnet" not in dictionary
|
69 |
+
or dictionary["controlnet"] is None
|
70 |
+
or len(dictionary["controlnet"]) == 0
|
71 |
+
):
|
72 |
+
logging.warning("ControlNet settings not found, ControlNet will be disabled")
|
73 |
+
lcm_diffusion_setting.controlnet = None
|
74 |
+
return
|
75 |
+
|
76 |
+
controlnet = ControlNetSetting()
|
77 |
+
controlnet.enabled = dictionary["controlnet"][0]["enabled"]
|
78 |
+
controlnet.conditioning_scale = dictionary["controlnet"][0]["conditioning_scale"]
|
79 |
+
controlnet.adapter_path = dictionary["controlnet"][0]["adapter_path"]
|
80 |
+
controlnet._control_image = None
|
81 |
+
image_path = dictionary["controlnet"][0]["control_image"]
|
82 |
+
if controlnet.enabled:
|
83 |
+
try:
|
84 |
+
controlnet._control_image = Image.open(image_path)
|
85 |
+
except (AttributeError, FileNotFoundError) as err:
|
86 |
+
print(err)
|
87 |
+
if controlnet._control_image is None:
|
88 |
+
logging.error("Wrong ControlNet control image! Disabling ControlNet")
|
89 |
+
controlnet.enabled = False
|
90 |
+
lcm_diffusion_setting.controlnet = controlnet
|
src/backend/device.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import platform
|
2 |
+
from constants import DEVICE
|
3 |
+
import torch
|
4 |
+
import openvino as ov
|
5 |
+
|
6 |
+
core = ov.Core()
|
7 |
+
|
8 |
+
|
9 |
+
def is_openvino_device() -> bool:
|
10 |
+
if DEVICE.lower() == "cpu" or DEVICE.lower()[0] == "g" or DEVICE.lower()[0] == "n":
|
11 |
+
return True
|
12 |
+
else:
|
13 |
+
return False
|
14 |
+
|
15 |
+
|
16 |
+
def get_device_name() -> str:
|
17 |
+
if DEVICE == "cuda" or DEVICE == "mps":
|
18 |
+
default_gpu_index = torch.cuda.current_device()
|
19 |
+
return torch.cuda.get_device_name(default_gpu_index)
|
20 |
+
elif platform.system().lower() == "darwin":
|
21 |
+
return platform.processor()
|
22 |
+
elif is_openvino_device():
|
23 |
+
return core.get_property(DEVICE.upper(), "FULL_DEVICE_NAME")
|
src/backend/image_saver.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from os import path, mkdir
|
3 |
+
from typing import Any
|
4 |
+
from uuid import uuid4
|
5 |
+
from backend.models.lcmdiffusion_setting import LCMDiffusionSetting
|
6 |
+
from utils import get_image_file_extension
|
7 |
+
|
8 |
+
|
9 |
+
def get_exclude_keys():
|
10 |
+
exclude_keys = {
|
11 |
+
"init_image": True,
|
12 |
+
"generated_images": True,
|
13 |
+
"lora": {
|
14 |
+
"models_dir": True,
|
15 |
+
"path": True,
|
16 |
+
},
|
17 |
+
"dirs": True,
|
18 |
+
"controlnet": {
|
19 |
+
"adapter_path": True,
|
20 |
+
},
|
21 |
+
}
|
22 |
+
return exclude_keys
|
23 |
+
|
24 |
+
|
25 |
+
class ImageSaver:
|
26 |
+
@staticmethod
|
27 |
+
def save_images(
|
28 |
+
output_path: str,
|
29 |
+
images: Any,
|
30 |
+
folder_name: str = "",
|
31 |
+
format: str = "PNG",
|
32 |
+
lcm_diffusion_setting: LCMDiffusionSetting = None,
|
33 |
+
) -> None:
|
34 |
+
gen_id = uuid4()
|
35 |
+
|
36 |
+
for index, image in enumerate(images):
|
37 |
+
if not path.exists(output_path):
|
38 |
+
mkdir(output_path)
|
39 |
+
|
40 |
+
if folder_name:
|
41 |
+
out_path = path.join(
|
42 |
+
output_path,
|
43 |
+
folder_name,
|
44 |
+
)
|
45 |
+
else:
|
46 |
+
out_path = output_path
|
47 |
+
|
48 |
+
if not path.exists(out_path):
|
49 |
+
mkdir(out_path)
|
50 |
+
image_extension = get_image_file_extension(format)
|
51 |
+
image.save(path.join(out_path, f"{gen_id}-{index+1}{image_extension}"))
|
52 |
+
if lcm_diffusion_setting:
|
53 |
+
with open(path.join(out_path, f"{gen_id}.json"), "w") as json_file:
|
54 |
+
json.dump(
|
55 |
+
lcm_diffusion_setting.model_dump(
|
56 |
+
exclude=get_exclude_keys(),
|
57 |
+
),
|
58 |
+
json_file,
|
59 |
+
indent=4,
|
60 |
+
)
|
src/backend/lcm_text_to_image.py
ADDED
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
from math import ceil
|
3 |
+
from typing import Any
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import logging
|
8 |
+
from backend.device import is_openvino_device
|
9 |
+
from backend.lora import load_lora_weight
|
10 |
+
from backend.controlnet import (
|
11 |
+
load_controlnet_adapters,
|
12 |
+
update_controlnet_arguments,
|
13 |
+
)
|
14 |
+
from backend.models.lcmdiffusion_setting import (
|
15 |
+
DiffusionTask,
|
16 |
+
LCMDiffusionSetting,
|
17 |
+
LCMLora,
|
18 |
+
)
|
19 |
+
from backend.openvino.pipelines import (
|
20 |
+
get_ov_image_to_image_pipeline,
|
21 |
+
get_ov_text_to_image_pipeline,
|
22 |
+
ov_load_taesd,
|
23 |
+
)
|
24 |
+
from backend.pipelines.lcm import (
|
25 |
+
get_image_to_image_pipeline,
|
26 |
+
get_lcm_model_pipeline,
|
27 |
+
load_taesd,
|
28 |
+
)
|
29 |
+
from backend.pipelines.lcm_lora import get_lcm_lora_pipeline
|
30 |
+
from constants import DEVICE
|
31 |
+
from diffusers import LCMScheduler
|
32 |
+
from image_ops import resize_pil_image
|
33 |
+
from backend.openvino.flux_pipeline import get_flux_pipeline
|
34 |
+
|
35 |
+
try:
|
36 |
+
# support for token merging; keeping it optional for now
|
37 |
+
import tomesd
|
38 |
+
except ImportError:
|
39 |
+
print("tomesd library unavailable; disabling token merging support")
|
40 |
+
tomesd = None
|
41 |
+
|
42 |
+
class LCMTextToImage:
|
43 |
+
def __init__(
|
44 |
+
self,
|
45 |
+
device: str = "cpu",
|
46 |
+
) -> None:
|
47 |
+
self.pipeline = None
|
48 |
+
self.use_openvino = False
|
49 |
+
self.device = ""
|
50 |
+
self.previous_model_id = None
|
51 |
+
self.previous_use_tae_sd = False
|
52 |
+
self.previous_use_lcm_lora = False
|
53 |
+
self.previous_ov_model_id = ""
|
54 |
+
self.previous_token_merging = 0.0
|
55 |
+
self.previous_safety_checker = False
|
56 |
+
self.previous_use_openvino = False
|
57 |
+
self.img_to_img_pipeline = None
|
58 |
+
self.is_openvino_init = False
|
59 |
+
self.previous_lora = None
|
60 |
+
self.task_type = DiffusionTask.text_to_image
|
61 |
+
self.torch_data_type = (
|
62 |
+
torch.float32 if is_openvino_device() or DEVICE == "mps" else torch.float16
|
63 |
+
)
|
64 |
+
print(f"Torch datatype : {self.torch_data_type}")
|
65 |
+
|
66 |
+
def _pipeline_to_device(self):
|
67 |
+
print(f"Pipeline device : {DEVICE}")
|
68 |
+
print(f"Pipeline dtype : {self.torch_data_type}")
|
69 |
+
self.pipeline.to(
|
70 |
+
torch_device=DEVICE,
|
71 |
+
torch_dtype=self.torch_data_type,
|
72 |
+
)
|
73 |
+
|
74 |
+
def _add_freeu(self):
|
75 |
+
pipeline_class = self.pipeline.__class__.__name__
|
76 |
+
if isinstance(self.pipeline.scheduler, LCMScheduler):
|
77 |
+
if pipeline_class == "StableDiffusionPipeline":
|
78 |
+
print("Add FreeU - SD")
|
79 |
+
self.pipeline.enable_freeu(
|
80 |
+
s1=0.9,
|
81 |
+
s2=0.2,
|
82 |
+
b1=1.2,
|
83 |
+
b2=1.4,
|
84 |
+
)
|
85 |
+
elif pipeline_class == "StableDiffusionXLPipeline":
|
86 |
+
print("Add FreeU - SDXL")
|
87 |
+
self.pipeline.enable_freeu(
|
88 |
+
s1=0.6,
|
89 |
+
s2=0.4,
|
90 |
+
b1=1.1,
|
91 |
+
b2=1.2,
|
92 |
+
)
|
93 |
+
|
94 |
+
def _enable_vae_tiling(self):
|
95 |
+
self.pipeline.vae.enable_tiling()
|
96 |
+
|
97 |
+
def _update_lcm_scheduler_params(self):
|
98 |
+
if isinstance(self.pipeline.scheduler, LCMScheduler):
|
99 |
+
self.pipeline.scheduler = LCMScheduler.from_config(
|
100 |
+
self.pipeline.scheduler.config,
|
101 |
+
beta_start=0.001,
|
102 |
+
beta_end=0.01,
|
103 |
+
)
|
104 |
+
|
105 |
+
def init(
|
106 |
+
self,
|
107 |
+
device: str = "cpu",
|
108 |
+
lcm_diffusion_setting: LCMDiffusionSetting = LCMDiffusionSetting(),
|
109 |
+
) -> None:
|
110 |
+
self.device = device
|
111 |
+
self.use_openvino = lcm_diffusion_setting.use_openvino
|
112 |
+
model_id = lcm_diffusion_setting.lcm_model_id
|
113 |
+
use_local_model = lcm_diffusion_setting.use_offline_model
|
114 |
+
use_tiny_auto_encoder = lcm_diffusion_setting.use_tiny_auto_encoder
|
115 |
+
use_lora = lcm_diffusion_setting.use_lcm_lora
|
116 |
+
lcm_lora: LCMLora = lcm_diffusion_setting.lcm_lora
|
117 |
+
token_merging = lcm_diffusion_setting.token_merging
|
118 |
+
ov_model_id = lcm_diffusion_setting.openvino_lcm_model_id
|
119 |
+
|
120 |
+
if lcm_diffusion_setting.diffusion_task == DiffusionTask.image_to_image.value:
|
121 |
+
lcm_diffusion_setting.init_image = resize_pil_image(
|
122 |
+
lcm_diffusion_setting.init_image,
|
123 |
+
lcm_diffusion_setting.image_width,
|
124 |
+
lcm_diffusion_setting.image_height,
|
125 |
+
)
|
126 |
+
|
127 |
+
if (
|
128 |
+
self.pipeline is None
|
129 |
+
or self.previous_model_id != model_id
|
130 |
+
or self.previous_use_tae_sd != use_tiny_auto_encoder
|
131 |
+
or self.previous_lcm_lora_base_id != lcm_lora.base_model_id
|
132 |
+
or self.previous_lcm_lora_id != lcm_lora.lcm_lora_id
|
133 |
+
or self.previous_use_lcm_lora != use_lora
|
134 |
+
or self.previous_ov_model_id != ov_model_id
|
135 |
+
or self.previous_token_merging != token_merging
|
136 |
+
or self.previous_safety_checker != lcm_diffusion_setting.use_safety_checker
|
137 |
+
or self.previous_use_openvino != lcm_diffusion_setting.use_openvino
|
138 |
+
or (
|
139 |
+
self.use_openvino
|
140 |
+
and (
|
141 |
+
self.previous_task_type != lcm_diffusion_setting.diffusion_task
|
142 |
+
or self.previous_lora != lcm_diffusion_setting.lora
|
143 |
+
)
|
144 |
+
)
|
145 |
+
or lcm_diffusion_setting.rebuild_pipeline
|
146 |
+
):
|
147 |
+
if self.use_openvino and is_openvino_device():
|
148 |
+
if self.pipeline:
|
149 |
+
del self.pipeline
|
150 |
+
self.pipeline = None
|
151 |
+
gc.collect()
|
152 |
+
self.is_openvino_init = True
|
153 |
+
if (
|
154 |
+
lcm_diffusion_setting.diffusion_task
|
155 |
+
== DiffusionTask.text_to_image.value
|
156 |
+
):
|
157 |
+
print(f"***** Init Text to image (OpenVINO) - {ov_model_id} *****")
|
158 |
+
if "flux" in ov_model_id.lower():
|
159 |
+
print("Loading OpenVINO Flux pipeline")
|
160 |
+
self.pipeline = get_flux_pipeline(ov_model_id)
|
161 |
+
else:
|
162 |
+
self.pipeline = get_ov_text_to_image_pipeline(
|
163 |
+
ov_model_id,
|
164 |
+
use_local_model,
|
165 |
+
)
|
166 |
+
elif (
|
167 |
+
lcm_diffusion_setting.diffusion_task
|
168 |
+
== DiffusionTask.image_to_image.value
|
169 |
+
):
|
170 |
+
print(f"***** Image to image (OpenVINO) - {ov_model_id} *****")
|
171 |
+
self.pipeline = get_ov_image_to_image_pipeline(
|
172 |
+
ov_model_id,
|
173 |
+
use_local_model,
|
174 |
+
)
|
175 |
+
else:
|
176 |
+
if self.pipeline:
|
177 |
+
del self.pipeline
|
178 |
+
self.pipeline = None
|
179 |
+
if self.img_to_img_pipeline:
|
180 |
+
del self.img_to_img_pipeline
|
181 |
+
self.img_to_img_pipeline = None
|
182 |
+
|
183 |
+
controlnet_args = load_controlnet_adapters(lcm_diffusion_setting)
|
184 |
+
if use_lora:
|
185 |
+
print(
|
186 |
+
f"***** Init LCM-LoRA pipeline - {lcm_lora.base_model_id} *****"
|
187 |
+
)
|
188 |
+
self.pipeline = get_lcm_lora_pipeline(
|
189 |
+
lcm_lora.base_model_id,
|
190 |
+
lcm_lora.lcm_lora_id,
|
191 |
+
use_local_model,
|
192 |
+
torch_data_type=self.torch_data_type,
|
193 |
+
pipeline_args=controlnet_args,
|
194 |
+
)
|
195 |
+
|
196 |
+
else:
|
197 |
+
print(f"***** Init LCM Model pipeline - {model_id} *****")
|
198 |
+
self.pipeline = get_lcm_model_pipeline(
|
199 |
+
model_id,
|
200 |
+
use_local_model,
|
201 |
+
controlnet_args,
|
202 |
+
)
|
203 |
+
|
204 |
+
self.img_to_img_pipeline = get_image_to_image_pipeline(self.pipeline)
|
205 |
+
|
206 |
+
if tomesd and token_merging > 0.001:
|
207 |
+
print(f"***** Token Merging: {token_merging} *****")
|
208 |
+
tomesd.apply_patch(self.pipeline, ratio=token_merging)
|
209 |
+
tomesd.apply_patch(self.img_to_img_pipeline, ratio=token_merging)
|
210 |
+
|
211 |
+
if use_tiny_auto_encoder:
|
212 |
+
if self.use_openvino and is_openvino_device():
|
213 |
+
print("Using Tiny Auto Encoder (OpenVINO)")
|
214 |
+
ov_load_taesd(
|
215 |
+
self.pipeline,
|
216 |
+
use_local_model,
|
217 |
+
)
|
218 |
+
else:
|
219 |
+
print("Using Tiny Auto Encoder")
|
220 |
+
load_taesd(
|
221 |
+
self.pipeline,
|
222 |
+
use_local_model,
|
223 |
+
self.torch_data_type,
|
224 |
+
)
|
225 |
+
load_taesd(
|
226 |
+
self.img_to_img_pipeline,
|
227 |
+
use_local_model,
|
228 |
+
self.torch_data_type,
|
229 |
+
)
|
230 |
+
|
231 |
+
if not self.use_openvino and not is_openvino_device():
|
232 |
+
self._pipeline_to_device()
|
233 |
+
|
234 |
+
if (
|
235 |
+
lcm_diffusion_setting.diffusion_task
|
236 |
+
== DiffusionTask.image_to_image.value
|
237 |
+
and lcm_diffusion_setting.use_openvino
|
238 |
+
):
|
239 |
+
self.pipeline.scheduler = LCMScheduler.from_config(
|
240 |
+
self.pipeline.scheduler.config,
|
241 |
+
)
|
242 |
+
else:
|
243 |
+
self._update_lcm_scheduler_params()
|
244 |
+
|
245 |
+
if use_lora:
|
246 |
+
self._add_freeu()
|
247 |
+
|
248 |
+
self.previous_model_id = model_id
|
249 |
+
self.previous_ov_model_id = ov_model_id
|
250 |
+
self.previous_use_tae_sd = use_tiny_auto_encoder
|
251 |
+
self.previous_lcm_lora_base_id = lcm_lora.base_model_id
|
252 |
+
self.previous_lcm_lora_id = lcm_lora.lcm_lora_id
|
253 |
+
self.previous_use_lcm_lora = use_lora
|
254 |
+
self.previous_token_merging = lcm_diffusion_setting.token_merging
|
255 |
+
self.previous_safety_checker = lcm_diffusion_setting.use_safety_checker
|
256 |
+
self.previous_use_openvino = lcm_diffusion_setting.use_openvino
|
257 |
+
self.previous_task_type = lcm_diffusion_setting.diffusion_task
|
258 |
+
self.previous_lora = lcm_diffusion_setting.lora.model_copy(deep=True)
|
259 |
+
lcm_diffusion_setting.rebuild_pipeline = False
|
260 |
+
if (
|
261 |
+
lcm_diffusion_setting.diffusion_task
|
262 |
+
== DiffusionTask.text_to_image.value
|
263 |
+
):
|
264 |
+
print(f"Pipeline : {self.pipeline}")
|
265 |
+
elif (
|
266 |
+
lcm_diffusion_setting.diffusion_task
|
267 |
+
== DiffusionTask.image_to_image.value
|
268 |
+
):
|
269 |
+
if self.use_openvino and is_openvino_device():
|
270 |
+
print(f"Pipeline : {self.pipeline}")
|
271 |
+
else:
|
272 |
+
print(f"Pipeline : {self.img_to_img_pipeline}")
|
273 |
+
if self.use_openvino:
|
274 |
+
if lcm_diffusion_setting.lora.enabled:
|
275 |
+
print("Warning: Lora models not supported on OpenVINO mode")
|
276 |
+
else:
|
277 |
+
adapters = self.pipeline.get_active_adapters()
|
278 |
+
print(f"Active adapters : {adapters}")
|
279 |
+
|
280 |
+
def _get_timesteps(self):
|
281 |
+
time_steps = self.pipeline.scheduler.config.get("timesteps")
|
282 |
+
time_steps_value = [int(time_steps)] if time_steps else None
|
283 |
+
return time_steps_value
|
284 |
+
|
285 |
+
def generate(
|
286 |
+
self,
|
287 |
+
lcm_diffusion_setting: LCMDiffusionSetting,
|
288 |
+
reshape: bool = False,
|
289 |
+
) -> Any:
|
290 |
+
guidance_scale = lcm_diffusion_setting.guidance_scale
|
291 |
+
img_to_img_inference_steps = lcm_diffusion_setting.inference_steps
|
292 |
+
check_step_value = int(
|
293 |
+
lcm_diffusion_setting.inference_steps * lcm_diffusion_setting.strength
|
294 |
+
)
|
295 |
+
if (
|
296 |
+
lcm_diffusion_setting.diffusion_task == DiffusionTask.image_to_image.value
|
297 |
+
and check_step_value < 1
|
298 |
+
):
|
299 |
+
img_to_img_inference_steps = ceil(1 / lcm_diffusion_setting.strength)
|
300 |
+
print(
|
301 |
+
f"Strength: {lcm_diffusion_setting.strength},{img_to_img_inference_steps}"
|
302 |
+
)
|
303 |
+
|
304 |
+
if lcm_diffusion_setting.use_seed:
|
305 |
+
cur_seed = lcm_diffusion_setting.seed
|
306 |
+
if self.use_openvino:
|
307 |
+
np.random.seed(cur_seed)
|
308 |
+
else:
|
309 |
+
torch.manual_seed(cur_seed)
|
310 |
+
|
311 |
+
is_openvino_pipe = lcm_diffusion_setting.use_openvino and is_openvino_device()
|
312 |
+
if is_openvino_pipe:
|
313 |
+
print("Using OpenVINO")
|
314 |
+
if reshape and not self.is_openvino_init:
|
315 |
+
print("Reshape and compile")
|
316 |
+
self.pipeline.reshape(
|
317 |
+
batch_size=-1,
|
318 |
+
height=lcm_diffusion_setting.image_height,
|
319 |
+
width=lcm_diffusion_setting.image_width,
|
320 |
+
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
|
321 |
+
)
|
322 |
+
self.pipeline.compile()
|
323 |
+
|
324 |
+
if self.is_openvino_init:
|
325 |
+
self.is_openvino_init = False
|
326 |
+
|
327 |
+
pipeline_extra_args = {}
|
328 |
+
if lcm_diffusion_setting.clip_skip > 1:
|
329 |
+
# We follow the convention that "CLIP Skip == 2" means "skip
|
330 |
+
# the last layer", so "CLIP Skip == 1" means "no skipping"
|
331 |
+
pipeline_extra_args['clip_skip'] = lcm_diffusion_setting.clip_skip - 1
|
332 |
+
|
333 |
+
if not lcm_diffusion_setting.use_safety_checker:
|
334 |
+
self.pipeline.safety_checker = None
|
335 |
+
if (
|
336 |
+
lcm_diffusion_setting.diffusion_task
|
337 |
+
== DiffusionTask.image_to_image.value
|
338 |
+
and not is_openvino_pipe
|
339 |
+
):
|
340 |
+
self.img_to_img_pipeline.safety_checker = None
|
341 |
+
|
342 |
+
if (
|
343 |
+
not lcm_diffusion_setting.use_lcm_lora
|
344 |
+
and not lcm_diffusion_setting.use_openvino
|
345 |
+
and lcm_diffusion_setting.guidance_scale != 1.0
|
346 |
+
):
|
347 |
+
print("Not using LCM-LoRA so setting guidance_scale 1.0")
|
348 |
+
guidance_scale = 1.0
|
349 |
+
|
350 |
+
controlnet_args = update_controlnet_arguments(lcm_diffusion_setting)
|
351 |
+
if lcm_diffusion_setting.use_openvino:
|
352 |
+
if (
|
353 |
+
lcm_diffusion_setting.diffusion_task
|
354 |
+
== DiffusionTask.text_to_image.value
|
355 |
+
):
|
356 |
+
result_images = self.pipeline(
|
357 |
+
prompt=lcm_diffusion_setting.prompt,
|
358 |
+
negative_prompt=lcm_diffusion_setting.negative_prompt,
|
359 |
+
num_inference_steps=lcm_diffusion_setting.inference_steps,
|
360 |
+
guidance_scale=guidance_scale,
|
361 |
+
width=lcm_diffusion_setting.image_width,
|
362 |
+
height=lcm_diffusion_setting.image_height,
|
363 |
+
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
|
364 |
+
).images
|
365 |
+
elif (
|
366 |
+
lcm_diffusion_setting.diffusion_task
|
367 |
+
== DiffusionTask.image_to_image.value
|
368 |
+
):
|
369 |
+
result_images = self.pipeline(
|
370 |
+
image=lcm_diffusion_setting.init_image,
|
371 |
+
strength=lcm_diffusion_setting.strength,
|
372 |
+
prompt=lcm_diffusion_setting.prompt,
|
373 |
+
negative_prompt=lcm_diffusion_setting.negative_prompt,
|
374 |
+
num_inference_steps=img_to_img_inference_steps * 3,
|
375 |
+
guidance_scale=guidance_scale,
|
376 |
+
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
|
377 |
+
).images
|
378 |
+
|
379 |
+
else:
|
380 |
+
if (
|
381 |
+
lcm_diffusion_setting.diffusion_task
|
382 |
+
== DiffusionTask.text_to_image.value
|
383 |
+
):
|
384 |
+
result_images = self.pipeline(
|
385 |
+
prompt=lcm_diffusion_setting.prompt,
|
386 |
+
negative_prompt=lcm_diffusion_setting.negative_prompt,
|
387 |
+
num_inference_steps=lcm_diffusion_setting.inference_steps,
|
388 |
+
guidance_scale=guidance_scale,
|
389 |
+
width=lcm_diffusion_setting.image_width,
|
390 |
+
height=lcm_diffusion_setting.image_height,
|
391 |
+
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
|
392 |
+
timesteps=self._get_timesteps(),
|
393 |
+
**pipeline_extra_args,
|
394 |
+
**controlnet_args,
|
395 |
+
).images
|
396 |
+
|
397 |
+
elif (
|
398 |
+
lcm_diffusion_setting.diffusion_task
|
399 |
+
== DiffusionTask.image_to_image.value
|
400 |
+
):
|
401 |
+
result_images = self.img_to_img_pipeline(
|
402 |
+
image=lcm_diffusion_setting.init_image,
|
403 |
+
strength=lcm_diffusion_setting.strength,
|
404 |
+
prompt=lcm_diffusion_setting.prompt,
|
405 |
+
negative_prompt=lcm_diffusion_setting.negative_prompt,
|
406 |
+
num_inference_steps=img_to_img_inference_steps,
|
407 |
+
guidance_scale=guidance_scale,
|
408 |
+
width=lcm_diffusion_setting.image_width,
|
409 |
+
height=lcm_diffusion_setting.image_height,
|
410 |
+
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
|
411 |
+
**pipeline_extra_args,
|
412 |
+
**controlnet_args,
|
413 |
+
).images
|
414 |
+
return result_images
|
src/backend/lora.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
from os import path
|
3 |
+
from paths import get_file_name, FastStableDiffusionPaths
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
|
7 |
+
# A basic class to keep track of the currently loaded LoRAs and
|
8 |
+
# their weights; the diffusers function \c get_active_adapters()
|
9 |
+
# returns a list of adapter names but not their weights so we need
|
10 |
+
# a way to keep track of the current LoRA weights to set whenever
|
11 |
+
# a new LoRA is loaded
|
12 |
+
class _lora_info:
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
path: str,
|
16 |
+
weight: float,
|
17 |
+
):
|
18 |
+
self.path = path
|
19 |
+
self.adapter_name = get_file_name(path)
|
20 |
+
self.weight = weight
|
21 |
+
|
22 |
+
def __del__(self):
|
23 |
+
self.path = None
|
24 |
+
self.adapter_name = None
|
25 |
+
|
26 |
+
|
27 |
+
_loaded_loras = []
|
28 |
+
_current_pipeline = None
|
29 |
+
|
30 |
+
|
31 |
+
# This function loads a LoRA from the LoRA path setting, so it's
|
32 |
+
# possible to load multiple LoRAs by calling this function more than
|
33 |
+
# once with a different LoRA path setting; note that if you plan to
|
34 |
+
# load multiple LoRAs and dynamically change their weights, you
|
35 |
+
# might want to set the LoRA fuse option to False
|
36 |
+
def load_lora_weight(
|
37 |
+
pipeline,
|
38 |
+
lcm_diffusion_setting,
|
39 |
+
):
|
40 |
+
if not lcm_diffusion_setting.lora.path:
|
41 |
+
raise Exception("Empty lora model path")
|
42 |
+
|
43 |
+
if not path.exists(lcm_diffusion_setting.lora.path):
|
44 |
+
raise Exception("Lora model path is invalid")
|
45 |
+
|
46 |
+
# If the pipeline has been rebuilt since the last call, remove all
|
47 |
+
# references to previously loaded LoRAs and store the new pipeline
|
48 |
+
global _loaded_loras
|
49 |
+
global _current_pipeline
|
50 |
+
if pipeline != _current_pipeline:
|
51 |
+
for lora in _loaded_loras:
|
52 |
+
del lora
|
53 |
+
del _loaded_loras
|
54 |
+
_loaded_loras = []
|
55 |
+
_current_pipeline = pipeline
|
56 |
+
|
57 |
+
current_lora = _lora_info(
|
58 |
+
lcm_diffusion_setting.lora.path,
|
59 |
+
lcm_diffusion_setting.lora.weight,
|
60 |
+
)
|
61 |
+
_loaded_loras.append(current_lora)
|
62 |
+
|
63 |
+
if lcm_diffusion_setting.lora.enabled:
|
64 |
+
print(f"LoRA adapter name : {current_lora.adapter_name}")
|
65 |
+
pipeline.load_lora_weights(
|
66 |
+
FastStableDiffusionPaths.get_lora_models_path(),
|
67 |
+
weight_name=Path(lcm_diffusion_setting.lora.path).name,
|
68 |
+
local_files_only=True,
|
69 |
+
adapter_name=current_lora.adapter_name,
|
70 |
+
)
|
71 |
+
update_lora_weights(
|
72 |
+
pipeline,
|
73 |
+
lcm_diffusion_setting,
|
74 |
+
)
|
75 |
+
|
76 |
+
if lcm_diffusion_setting.lora.fuse:
|
77 |
+
pipeline.fuse_lora()
|
78 |
+
|
79 |
+
|
80 |
+
def get_lora_models(root_dir: str):
|
81 |
+
lora_models = glob.glob(f"{root_dir}/**/*.safetensors", recursive=True)
|
82 |
+
lora_models_map = {}
|
83 |
+
for file_path in lora_models:
|
84 |
+
lora_name = get_file_name(file_path)
|
85 |
+
if lora_name is not None:
|
86 |
+
lora_models_map[lora_name] = file_path
|
87 |
+
return lora_models_map
|
88 |
+
|
89 |
+
|
90 |
+
# This function returns a list of (adapter_name, weight) tuples for the
|
91 |
+
# currently loaded LoRAs
|
92 |
+
def get_active_lora_weights():
|
93 |
+
active_loras = []
|
94 |
+
for lora_info in _loaded_loras:
|
95 |
+
active_loras.append(
|
96 |
+
(
|
97 |
+
lora_info.adapter_name,
|
98 |
+
lora_info.weight,
|
99 |
+
)
|
100 |
+
)
|
101 |
+
return active_loras
|
102 |
+
|
103 |
+
|
104 |
+
# This function receives a pipeline, an lcm_diffusion_setting object and
|
105 |
+
# an optional list of updated (adapter_name, weight) tuples
|
106 |
+
def update_lora_weights(
|
107 |
+
pipeline,
|
108 |
+
lcm_diffusion_setting,
|
109 |
+
lora_weights=None,
|
110 |
+
):
|
111 |
+
global _loaded_loras
|
112 |
+
global _current_pipeline
|
113 |
+
if pipeline != _current_pipeline:
|
114 |
+
print("Wrong pipeline when trying to update LoRA weights")
|
115 |
+
return
|
116 |
+
if lora_weights:
|
117 |
+
for idx, lora in enumerate(lora_weights):
|
118 |
+
if _loaded_loras[idx].adapter_name != lora[0]:
|
119 |
+
print("Wrong adapter name in LoRA enumeration!")
|
120 |
+
continue
|
121 |
+
_loaded_loras[idx].weight = lora[1]
|
122 |
+
|
123 |
+
adapter_names = []
|
124 |
+
adapter_weights = []
|
125 |
+
if lcm_diffusion_setting.use_lcm_lora:
|
126 |
+
adapter_names.append("lcm")
|
127 |
+
adapter_weights.append(1.0)
|
128 |
+
for lora in _loaded_loras:
|
129 |
+
adapter_names.append(lora.adapter_name)
|
130 |
+
adapter_weights.append(lora.weight)
|
131 |
+
pipeline.set_adapters(
|
132 |
+
adapter_names,
|
133 |
+
adapter_weights=adapter_weights,
|
134 |
+
)
|
135 |
+
adapter_weights = zip(adapter_names, adapter_weights)
|
136 |
+
print(f"Adapters: {list(adapter_weights)}")
|
src/backend/models/device.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
|
3 |
+
|
4 |
+
class DeviceInfo(BaseModel):
|
5 |
+
device_type: str
|
6 |
+
device_name: str
|
7 |
+
os: str
|
8 |
+
platform: str
|
9 |
+
processor: str
|
src/backend/models/gen_images.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
from enum import Enum, auto
|
3 |
+
from paths import FastStableDiffusionPaths
|
4 |
+
|
5 |
+
|
6 |
+
class ImageFormat(str, Enum):
|
7 |
+
"""Image format"""
|
8 |
+
|
9 |
+
JPEG = "jpeg"
|
10 |
+
PNG = "png"
|
11 |
+
|
12 |
+
|
13 |
+
class GeneratedImages(BaseModel):
|
14 |
+
path: str = FastStableDiffusionPaths.get_results_path()
|
15 |
+
format: str = ImageFormat.PNG.value.upper()
|
16 |
+
save_image: bool = True
|