Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
from mtcnn.mtcnn import MTCNN
|
5 |
+
import tensorflow as tf
|
6 |
+
import tensorflow_addons
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
|
10 |
+
detector = MTCNN()
|
11 |
+
|
12 |
+
model = tf.keras.models.load_model("FINAL-EFFICIENTNETV2-B0")
|
13 |
+
|
14 |
+
|
15 |
+
def deepfakespredict(input_img):
|
16 |
+
|
17 |
+
face = detector.detect_faces(input_img)
|
18 |
+
|
19 |
+
text =""
|
20 |
+
|
21 |
+
if len(face) > 0:
|
22 |
+
x, y, width, height = face[0]['box']
|
23 |
+
x2, y2 = x + width, y + height
|
24 |
+
|
25 |
+
cv2.rectangle(input_img, (x, y), (x2, y2), (0, 255, 0), 2)
|
26 |
+
|
27 |
+
face_image = input_img[y:y2, x:x2]
|
28 |
+
face_image2 = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
|
29 |
+
face_image3 = cv2.resize(face_image2, (224, 224))
|
30 |
+
face_image4 = face_image3/255
|
31 |
+
|
32 |
+
pred = model.predict(np.expand_dims(face_image4, axis=0))[0]
|
33 |
+
|
34 |
+
if pred[1] >= 0.6:
|
35 |
+
text = "The image is fake."
|
36 |
+
elif pred[0] >= 0.6:
|
37 |
+
text = "The image is real."
|
38 |
+
else:
|
39 |
+
text = "The image might be real or fake."
|
40 |
+
|
41 |
+
# if pred[1] >= 0.5:
|
42 |
+
# text = "The image is fake."
|
43 |
+
# else:
|
44 |
+
# text = "The image is real."
|
45 |
+
|
46 |
+
else:
|
47 |
+
text = "Face is not detected in the image."
|
48 |
+
|
49 |
+
return pred, text, input_img
|
50 |
+
|
51 |
+
|
52 |
+
title="EfficientNetV2 Deepfakes Image Detector"
|
53 |
+
description="This is a demo implementation of EfficientNetV2 Deepfakes Image Detector. To use it, simply upload your image, or click one of the examples to load them."
|
54 |
+
examples = [
|
55 |
+
['fake-86.jpg'],
|
56 |
+
['fake-239.jpg'],
|
57 |
+
['fake-254.jpg'],
|
58 |
+
['fake-1266.jpg'],
|
59 |
+
['fake-2225.jpg']
|
60 |
+
]
|
61 |
+
demo = gr.Interface(deepfakespredict,
|
62 |
+
inputs = ["image"],
|
63 |
+
outputs=["text","text","image"],
|
64 |
+
title=title,
|
65 |
+
description=description,
|
66 |
+
examples=examples
|
67 |
+
)
|
68 |
+
demo.launch()
|