File size: 13,766 Bytes
222619b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import matplotlib
matplotlib.use('Agg')

from tasks.tts.tts_base import TTSBaseTask
from vocoders.base_vocoder import get_vocoder_cls
from tasks.tts.dataset_utils import FastSpeechDataset
from modules.commons.ssim import ssim
import os
from modules.fastspeech.tts_modules import mel2ph_to_dur
from utils.hparams import hparams
from utils.plot import spec_to_figure, dur_to_figure, f0_to_figure
from utils.pitch_utils import denorm_f0
from modules.fastspeech.fs2 import FastSpeech2
import torch
import torch.optim
import torch.utils.data
import torch.nn.functional as F
import utils
import torch.distributions
import numpy as np


class FastSpeech2Task(TTSBaseTask):
    def __init__(self):
        super(FastSpeech2Task, self).__init__()
        self.dataset_cls = FastSpeechDataset
        self.mse_loss_fn = torch.nn.MSELoss()
        mel_losses = hparams['mel_loss'].split("|")
        self.loss_and_lambda = {}
        for i, l in enumerate(mel_losses):
            if l == '':
                continue
            if ':' in l:
                l, lbd = l.split(":")
                lbd = float(lbd)
            else:
                lbd = 1.0
            self.loss_and_lambda[l] = lbd
        print("| Mel losses:", self.loss_and_lambda)
        self.sil_ph = self.phone_encoder.sil_phonemes()
        f0_stats_fn = f'{hparams["binary_data_dir"]}/train_f0s_mean_std.npy'
        if os.path.exists(f0_stats_fn):
            hparams['f0_mean'], hparams['f0_std'] = np.load(f0_stats_fn)
            hparams['f0_mean'] = float(hparams['f0_mean'])
            hparams['f0_std'] = float(hparams['f0_std'])

    def build_tts_model(self):
        self.model = FastSpeech2(self.phone_encoder)

    def build_model(self):
        self.build_tts_model()
        if hparams['load_ckpt'] != '':
            self.load_ckpt(hparams['load_ckpt'], strict=False)
        utils.print_arch(self.model)
        return self.model

    def _training_step(self, sample, batch_idx, _):
        loss_output = self.run_model(self.model, sample)
        total_loss = sum([v for v in loss_output.values() if isinstance(v, torch.Tensor) and v.requires_grad])
        loss_output['batch_size'] = sample['txt_tokens'].size()[0]
        return total_loss, loss_output

    def validation_step(self, sample, batch_idx):
        outputs = {}
        outputs['losses'] = {}
        outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True)
        outputs['total_loss'] = sum(outputs['losses'].values())
        outputs['nsamples'] = sample['nsamples']
        mel_out = self.model.out2mel(model_out['mel_out'])
        outputs = utils.tensors_to_scalars(outputs)
        if self.global_step % hparams['valid_infer_interval'] == 0 \
                and batch_idx < hparams['num_valid_plots']:
            vmin = hparams['mel_vmin']
            vmax = hparams['mel_vmax']
            self.plot_mel(batch_idx, sample['mels'], mel_out)
            self.plot_dur(batch_idx, sample, model_out)
            if hparams['use_pitch_embed']:
                self.plot_pitch(batch_idx, sample, model_out)
            if self.vocoder is None:
                self.vocoder = get_vocoder_cls(hparams)()
            if self.global_step > 0:
                spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
                # with gt duration
                model_out = self.model(sample['txt_tokens'], mel2ph=sample['mel2ph'],
                                       spk_embed=spk_embed, infer=True)
                wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu())
                self.logger.add_audio(f'wav_gtdur_{batch_idx}', wav_pred, self.global_step,
                                      hparams['audio_sample_rate'])
                self.logger.add_figure(
                    f'mel_gtdur_{batch_idx}',
                    spec_to_figure(model_out['mel_out'][0], vmin, vmax), self.global_step)
                # with pred duration
                model_out = self.model(sample['txt_tokens'], spk_embed=spk_embed, infer=True)
                self.logger.add_figure(
                    f'mel_{batch_idx}',
                    spec_to_figure(model_out['mel_out'][0], vmin, vmax), self.global_step)
                wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu())
                self.logger.add_audio(f'wav_{batch_idx}', wav_pred, self.global_step, hparams['audio_sample_rate'])
            # gt wav
            if self.global_step <= hparams['valid_infer_interval']:
                mel_gt = sample['mels'][0].cpu()
                wav_gt = self.vocoder.spec2wav(mel_gt)
                self.logger.add_audio(f'wav_gt_{batch_idx}', wav_gt, self.global_step, 22050)
        return outputs

    def run_model(self, model, sample, return_output=False):
        txt_tokens = sample['txt_tokens']  # [B, T_t]
        target = sample['mels']  # [B, T_s, 80]
        mel2ph = sample['mel2ph']  # [B, T_s]
        f0 = sample['f0']
        uv = sample['uv']
        energy = sample['energy']
        spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
        output = model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed,
                       ref_mels=target, f0=f0, uv=uv, energy=energy,
                       tgt_mels=target, infer=False)
        losses = {}
        self.add_mel_loss(output['mel_out'], target, losses)
        self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses)
        if hparams['use_pitch_embed']:
            self.add_pitch_loss(output, sample, losses)
        if not return_output:
            return losses
        else:
            return losses, output

    ############
    # losses
    ############
    def add_mel_loss(self, mel_out, target, losses, postfix='', mel_mix_loss=None):
        nonpadding = target.abs().sum(-1).ne(0).float()
        for loss_name, lbd in self.loss_and_lambda.items():
            if 'l1' == loss_name:
                l = self.l1_loss(mel_out, target)
            elif 'mse' == loss_name:
                l = self.mse_loss(mel_out, target)
            elif 'ssim' == loss_name:
                l = self.ssim_loss(mel_out, target)
            elif 'gdl' == loss_name:
                l = self.gdl_loss_fn(mel_out, target, nonpadding) \
                    * self.loss_and_lambda['gdl']
            losses[f'{loss_name}{postfix}'] = l * lbd

    def l1_loss(self, decoder_output, target):
        # decoder_output : B x T x n_mel
        # target : B x T x n_mel
        l1_loss = F.l1_loss(decoder_output, target, reduction='none')
        weights = self.weights_nonzero_speech(target)
        l1_loss = (l1_loss * weights).sum() / weights.sum()
        return l1_loss

    def add_energy_loss(self, energy_pred, energy, losses):
        nonpadding = (energy != 0).float()
        loss = (F.mse_loss(energy_pred, energy, reduction='none') * nonpadding).sum() / nonpadding.sum()
        loss = loss * hparams['lambda_energy']
        losses['e'] = loss

    def mse_loss(self, decoder_output, target):
        # decoder_output : B x T x n_mel
        # target : B x T x n_mel
        assert decoder_output.shape == target.shape
        mse_loss = F.mse_loss(decoder_output, target, reduction='none')
        weights = self.weights_nonzero_speech(target)
        mse_loss = (mse_loss * weights).sum() / weights.sum()
        return mse_loss

    def ssim_loss(self, decoder_output, target, bias=6.0):
        # decoder_output : B x T x n_mel
        # target : B x T x n_mel
        assert decoder_output.shape == target.shape
        weights = self.weights_nonzero_speech(target)
        decoder_output = decoder_output[:, None] + bias
        target = target[:, None] + bias
        ssim_loss = 1 - ssim(decoder_output, target, size_average=False)
        ssim_loss = (ssim_loss * weights).sum() / weights.sum()
        return ssim_loss

    def add_dur_loss(self, dur_pred, mel2ph, txt_tokens, losses=None):
        """

        :param dur_pred: [B, T], float, log scale
        :param mel2ph: [B, T]
        :param txt_tokens: [B, T]
        :param losses:
        :return:
        """
        B, T = txt_tokens.shape
        nonpadding = (txt_tokens != 0).float()
        dur_gt = mel2ph_to_dur(mel2ph, T).float() * nonpadding
        is_sil = torch.zeros_like(txt_tokens).bool()
        for p in self.sil_ph:
            is_sil = is_sil | (txt_tokens == self.phone_encoder.encode(p)[0])
        is_sil = is_sil.float()  # [B, T_txt]
        losses['pdur'] = F.mse_loss(dur_pred, (dur_gt + 1).log(), reduction='none')
        losses['pdur'] = (losses['pdur'] * nonpadding).sum() / nonpadding.sum()
        losses['pdur'] = losses['pdur'] * hparams['lambda_ph_dur']
        dur_pred = (dur_pred.exp() - 1).clamp(min=0)
        # use linear scale for sent and word duration
        if hparams['lambda_word_dur'] > 0:
            word_id = (is_sil.cumsum(-1) * (1 - is_sil)).long()
            word_dur_p = dur_pred.new_zeros([B, word_id.max() + 1]).scatter_add(1, word_id, dur_pred)[:, 1:]
            word_dur_g = dur_gt.new_zeros([B, word_id.max() + 1]).scatter_add(1, word_id, dur_gt)[:, 1:]
            wdur_loss = F.mse_loss((word_dur_p + 1).log(), (word_dur_g + 1).log(), reduction='none')
            word_nonpadding = (word_dur_g > 0).float()
            wdur_loss = (wdur_loss * word_nonpadding).sum() / word_nonpadding.sum()
            losses['wdur'] = wdur_loss * hparams['lambda_word_dur']
        if hparams['lambda_sent_dur'] > 0:
            sent_dur_p = dur_pred.sum(-1)
            sent_dur_g = dur_gt.sum(-1)
            sdur_loss = F.mse_loss((sent_dur_p + 1).log(), (sent_dur_g + 1).log(), reduction='mean')
            losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur']

    def add_pitch_loss(self, output, sample, losses):
        mel2ph = sample['mel2ph']  # [B, T_s]
        f0 = sample['f0']
        uv = sample['uv']
        nonpadding = (mel2ph != 0).float() if hparams['pitch_type'] == 'frame' \
            else (sample['txt_tokens'] != 0).float()
        self.add_f0_loss(output['pitch_pred'], f0, uv, losses, nonpadding=nonpadding) # output['pitch_pred']: [B, T, 2], f0: [B, T], uv: [B, T]

    def add_f0_loss(self, p_pred, f0, uv, losses, nonpadding, postfix=''):
        assert p_pred[..., 0].shape == f0.shape
        if hparams['use_uv'] and hparams['pitch_type'] == 'frame':
            assert p_pred[..., 1].shape == uv.shape, (p_pred.shape, uv.shape)
            losses[f'uv{postfix}'] = (F.binary_cross_entropy_with_logits(
                p_pred[:, :, 1], uv, reduction='none') * nonpadding).sum() \
                                     / nonpadding.sum() * hparams['lambda_uv']
            nonpadding = nonpadding * (uv == 0).float()
        f0_pred = p_pred[:, :, 0]
        pitch_loss_fn = F.l1_loss if hparams['pitch_loss'] == 'l1' else F.mse_loss
        losses[f'f0{postfix}'] = (pitch_loss_fn(f0_pred, f0, reduction='none') * nonpadding).sum() \
                                 / nonpadding.sum() * hparams['lambda_f0']


    ############
    # validation plots
    ############
    def plot_dur(self, batch_idx, sample, model_out):
        T_txt = sample['txt_tokens'].shape[1]
        dur_gt = mel2ph_to_dur(sample['mel2ph'], T_txt)[0]
        dur_pred = model_out['dur']
        if hasattr(self.model, 'out2dur'):
            dur_pred = self.model.out2dur(model_out['dur']).float()
        txt = self.phone_encoder.decode(sample['txt_tokens'][0].cpu().numpy())
        txt = txt.split(" ")
        self.logger.add_figure(
            f'dur_{batch_idx}', dur_to_figure(dur_gt, dur_pred, txt), self.global_step)

    def plot_pitch(self, batch_idx, sample, model_out):
        self.logger.add_figure(
            f'f0_{batch_idx}',
            f0_to_figure(model_out['f0_denorm'][0], None, model_out['f0_denorm_pred'][0]),
            self.global_step)

    ############
    # inference
    ############
    def test_step(self, sample, batch_idx):
        spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
        txt_tokens = sample['txt_tokens']
        mel2ph, uv, f0 = None, None, None
        ref_mels = sample['mels']
        if hparams['use_gt_dur']:
            mel2ph = sample['mel2ph']
        if hparams['use_gt_f0']:
            f0 = sample['f0']
            uv = sample['uv']
        run_model = lambda: self.model(
            txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, ref_mels=ref_mels, infer=True)
        if hparams['profile_infer']:
            mel2ph, uv, f0 = sample['mel2ph'], sample['uv'], sample['f0']
            with utils.Timer('fs', enable=True):
                outputs = run_model()
            if 'gen_wav_time' not in self.stats:
                self.stats['gen_wav_time'] = 0
            wav_time = float(outputs["mels_out"].shape[1]) * hparams['hop_size'] / hparams["audio_sample_rate"]
            self.stats['gen_wav_time'] += wav_time
            print(f'[Timer] wav total seconds: {self.stats["gen_wav_time"]}')
            from pytorch_memlab import LineProfiler
            with LineProfiler(self.model.forward) as prof:
                run_model()
            prof.print_stats()
        else:
            outputs = run_model()
            sample['outputs'] = self.model.out2mel(outputs['mel_out'])
            sample['mel2ph_pred'] = outputs['mel2ph']
            if hparams['use_pitch_embed']:
                sample['f0'] = denorm_f0(sample['f0'], sample['uv'], hparams)
                if hparams['pitch_type'] == 'ph':
                    sample['f0'] = torch.gather(F.pad(sample['f0'], [1, 0]), 1, sample['mel2ph'])
                sample['f0_pred'] = outputs.get('f0_denorm')
            return self.after_infer(sample)