#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Run inference for pre-processed data with a trained model. """ import logging import math import numpy, math, pdb, sys, random import time, os, itertools, shutil, importlib import argparse import os import sys import glob from sklearn import metrics import soundfile as sf #import sentencepiece as spm import torch import inference as encoder import torch.nn as nn import torch.nn.functional as F from pathlib import Path logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) from resemblyzer import VoiceEncoder, preprocess_wav def tuneThresholdfromScore(scores, labels, target_fa, target_fr=None): fpr, tpr, thresholds = metrics.roc_curve(labels, scores, pos_label=1) fnr = 1 - tpr fnr = fnr * 100 fpr = fpr * 100 tunedThreshold = []; if target_fr: for tfr in target_fr: idx = numpy.nanargmin(numpy.absolute((tfr - fnr))) tunedThreshold.append([thresholds[idx], fpr[idx], fnr[idx]]); for tfa in target_fa: idx = numpy.nanargmin(numpy.absolute((tfa - fpr))) # numpy.where(fpr<=tfa)[0][-1] tunedThreshold.append([thresholds[idx], fpr[idx], fnr[idx]]); idxE = numpy.nanargmin(numpy.absolute((fnr - fpr))) eer = max(fpr[idxE], fnr[idxE]) return (tunedThreshold, eer, fpr, fnr); def loadWAV(filename, max_frames, evalmode=True, num_eval=10): # Maximum audio length max_audio = max_frames * 160 + 240 # Read wav file and convert to torch tensor audio,sample_rate = sf.read(filename) feats_v0 = torch.from_numpy(audio).float() audiosize = audio.shape[0] if audiosize <= max_audio: shortage = math.floor((max_audio - audiosize + 1) / 2) audio = numpy.pad(audio, (shortage, shortage), 'constant', constant_values=0) audiosize = audio.shape[0] if evalmode: startframe = numpy.linspace(0, audiosize - max_audio, num=num_eval) else: startframe = numpy.array([numpy.int64(random.random() * (audiosize - max_audio))]) feats = [] if evalmode and max_frames == 0: feats.append(audio) else: for asf in startframe: feats.append(audio[int(asf):int(asf) + max_audio]) feat = numpy.stack(feats, axis=0) feat = torch.FloatTensor(feat) return feat; def evaluateFromList(listfilename, print_interval=100, test_path='', multi=False): lines = [] files = [] feats = {} tstart = time.time() ## Read all lines with open(listfilename) as listfile: while True: line = listfile.readline(); if (not line): break; data = line.split(); ## Append random label if missing if len(data) == 2: data = [random.randint(0,1)] + data files.append(data[1]) files.append(data[2]) lines.append(line) setfiles = list(set(files)) setfiles.sort() ## Save all features to file for idx, file in enumerate(setfiles): # preprocessed_wav = encoder.preprocess_wav(os.path.join(test_path,file)) # embed = encoder.embed_utterance(preprocessed_wav) processed_wav = preprocess_wav(os.path.join(test_path,file)) embed = voice_encoder.embed_utterance(processed_wav) torch.cuda.empty_cache() ref_feat = torch.from_numpy(embed).unsqueeze(0) feats[file] = ref_feat telapsed = time.time() - tstart if idx % print_interval == 0: sys.stdout.write("\rReading %d of %d: %.2f Hz, embedding size %d"%(idx,len(setfiles),idx/telapsed,ref_feat.size()[1])); print('') all_scores = []; all_labels = []; all_trials = []; tstart = time.time() ## Read files and compute all scores for idx, line in enumerate(lines): data = line.split(); ## Append random label if missing if len(data) == 2: data = [random.randint(0,1)] + data ref_feat = feats[data[1]] com_feat = feats[data[2]] ref_feat = ref_feat.cuda() com_feat = com_feat.cuda() # normalize feats ref_feat = F.normalize(ref_feat, p=2, dim=1) com_feat = F.normalize(com_feat, p=2, dim=1) dist = F.pairwise_distance(ref_feat.unsqueeze(-1), com_feat.unsqueeze(-1)).detach().cpu().numpy(); score = -1 * numpy.mean(dist); all_scores.append(score); all_labels.append(int(data[0])); all_trials.append(data[1]+" "+data[2]) if idx % print_interval == 0: telapsed = time.time() - tstart sys.stdout.write("\rComputing %d of %d: %.2f Hz"%(idx,len(lines),idx/telapsed)); sys.stdout.flush(); print('\n') return (all_scores, all_labels, all_trials); if __name__ == '__main__': parser = argparse.ArgumentParser("baseline") parser.add_argument("--data_root", type=str, help="", required=True) parser.add_argument("--list", type=str, help="", required=True) parser.add_argument("--model_dir", type=str, help="model parameters for AudioEncoder", required=True) args = parser.parse_args() # Load the models one by one. print("Preparing the encoder...") # encoder.load_model(Path(args.model_dir)) print("Insert the wav file name...") voice_encoder = VoiceEncoder().cuda() sc, lab, trials = evaluateFromList(args.list, print_interval=100, test_path=args.data_root) result = tuneThresholdfromScore(sc, lab, [1, 0.1]); print('EER %2.4f'%result[1])