Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import spaces | |
from diffusers import FluxPipeline | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
MODEL_ID = "drbaph/FLUX.1-schnell-dev-merged-fp8-4step" | |
MODEL_FILE = "flux1-schnell-dev-merged-fp8-4step.safetensors" | |
def load_model(): | |
pipe = FluxPipeline.from_single_file( | |
f"https://huggingface.co/{MODEL_ID}/resolve/main/{MODEL_FILE}", | |
torch_dtype=dtype | |
) | |
pipe.to(device) | |
return pipe | |
pipe = load_model() | |
MAX_SEED = 2**32 - 1 | |
MAX_IMAGE_SIZE = 2048 | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = torch.randint(0, MAX_SEED, (1,)).item() | |
generator = torch.Generator(device=device).manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=0.0, | |
max_sequence_length=256 | |
).images[0] | |
return image, seed | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# FLUX.1 [schnell-dev-merged-fp8-4step]") | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button("Generate") | |
with gr.Row(): | |
result = gr.Image(label="Generated Image") | |
seed_output = gr.Number(label="Seed Used") | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) | |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) | |
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=10, step=1, value=4) | |
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps] | |
run_button.click(fn=infer, inputs=inputs, outputs=[result, seed_output]) | |
demo.launch() |