Jordan Legg commited on
Commit
2e306db
β€’
1 Parent(s): 126a4f5
Files changed (2) hide show
  1. app.py +128 -42
  2. requirements.txt +1 -1
app.py CHANGED
@@ -1,60 +1,146 @@
1
  import gradio as gr
2
- import torch
 
3
  import spaces
4
- from diffusers import FluxPipeline
 
5
 
 
 
6
  device = "cuda" if torch.cuda.is_available() else "cpu"
7
- dtype = torch.float16 if torch.cuda.is_available() else torch.float32
8
-
9
- MODEL_ID = "drbaph/FLUX.1-schnell-dev-merged-fp8-4step"
10
- MODEL_FILE = "flux1-schnell-dev-merged-fp8-4step.safetensors"
11
-
12
- def load_model():
13
- pipe = FluxPipeline.from_single_file(
14
- f"https://huggingface.co/{MODEL_ID}/resolve/main/{MODEL_FILE}",
15
- torch_dtype=dtype
16
- )
17
- pipe.to(device)
18
- return pipe
19
-
20
- pipe = load_model()
21
-
22
- MAX_SEED = 2**32 - 1
23
  MAX_IMAGE_SIZE = 2048
24
 
 
 
 
25
  @spaces.GPU()
26
  def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
27
  if randomize_seed:
28
- seed = torch.randint(0, MAX_SEED, (1,)).item()
29
- generator = torch.Generator(device=device).manual_seed(seed)
30
  image = pipe(
31
- prompt=prompt,
32
  width=width,
33
  height=height,
34
- num_inference_steps=num_inference_steps,
35
  generator=generator,
36
- guidance_scale=0.0,
37
- max_sequence_length=256
38
  ).images[0]
39
  return image, seed
40
 
41
- # Gradio interface
42
- with gr.Blocks() as demo:
43
- gr.Markdown("# FLUX.1 [schnell-dev-merged-fp8-4step]")
44
- with gr.Row():
45
- prompt = gr.Textbox(label="Prompt")
46
- run_button = gr.Button("Generate")
47
- with gr.Row():
48
- result = gr.Image(label="Generated Image")
49
- seed_output = gr.Number(label="Seed Used")
50
- with gr.Accordion("Advanced Settings", open=False):
51
- seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
52
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
53
- width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
54
- height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
55
- num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=10, step=1, value=4)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
- inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps]
58
- run_button.click(fn=infer, inputs=inputs, outputs=[result, seed_output])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
- demo.launch()
 
1
  import gradio as gr
2
+ import numpy as np
3
+ import random
4
  import spaces
5
+ import torch
6
+ from diffusers import DiffusionPipeline
7
 
8
+ # Define constants
9
+ dtype = torch.bfloat16
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
+ MAX_SEED = np.iinfo(np.int32).max
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  MAX_IMAGE_SIZE = 2048
13
 
14
+ # Load the diffusion pipeline
15
+ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
16
+
17
  @spaces.GPU()
18
  def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
19
  if randomize_seed:
20
+ seed = random.randint(0, MAX_SEED)
21
+ generator = torch.Generator().manual_seed(seed)
22
  image = pipe(
23
+ prompt=prompt,
24
  width=width,
25
  height=height,
26
+ num_inference_steps=num_inference_steps,
27
  generator=generator,
28
+ guidance_scale=0.0
 
29
  ).images[0]
30
  return image, seed
31
 
32
+ # Define example prompts
33
+ examples = [
34
+ "a tiny astronaut hatching from an egg on the moon",
35
+ "a cat holding a sign that says hello world",
36
+ "an anime illustration of a wiener schnitzel",
37
+ ]
38
+
39
+ # CSS styling for the Japanese-inspired interface
40
+ css = """
41
+ body {
42
+ background-color: #fff;
43
+ font-family: 'Noto Sans JP', sans-serif;
44
+ color: #333;
45
+ }
46
+ #col-container {
47
+ margin: 0 auto;
48
+ max-width: 520px;
49
+ border: 2px solid #000;
50
+ padding: 20px;
51
+ background-color: #f7f7f7;
52
+ border-radius: 10px;
53
+ }
54
+ .gr-button {
55
+ background-color: #e60012;
56
+ color: #fff;
57
+ border: 2px solid #000;
58
+ }
59
+ .gr-button:hover {
60
+ background-color: #c20010;
61
+ }
62
+ .gr-slider, .gr-checkbox, .gr-textbox {
63
+ border: 2px solid #000;
64
+ }
65
+ .gr-accordion {
66
+ border: 2px solid #000;
67
+ background-color: #fff;
68
+ }
69
+ .gr-image {
70
+ border: 2px solid #000;
71
+ }
72
+ """
73
+
74
+ # Create the Gradio interface
75
+ with gr.Blocks(css=css) as demo:
76
 
77
+ with gr.Column(elem_id="col-container"):
78
+ gr.Markdown("""
79
+ # FLUX.1 [schnell]
80
+ 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
81
+ [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
82
+ """)
83
+
84
+ with gr.Row():
85
+ prompt = gr.Textbox(
86
+ label="Prompt",
87
+ show_label=False,
88
+ max_lines=1,
89
+ placeholder="Enter your prompt",
90
+ container=False,
91
+ )
92
+ run_button = gr.Button("Run", scale=0)
93
+
94
+ result = gr.Image(label="Result", show_label=False)
95
+
96
+ with gr.Accordion("Advanced Settings", open=False):
97
+ seed = gr.Slider(
98
+ label="Seed",
99
+ minimum=0,
100
+ maximum=MAX_SEED,
101
+ step=1,
102
+ value=42,
103
+ )
104
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
105
+
106
+ with gr.Row():
107
+ width = gr.Slider(
108
+ label="Width",
109
+ minimum=256,
110
+ maximum=MAX_IMAGE_SIZE,
111
+ step=32,
112
+ value=1024,
113
+ )
114
+ height = gr.Slider(
115
+ label="Height",
116
+ minimum=256,
117
+ maximum=MAX_IMAGE_SIZE,
118
+ step=32,
119
+ value=1024,
120
+ )
121
+
122
+ with gr.Row():
123
+ num_inference_steps = gr.Slider(
124
+ label="Number of inference steps",
125
+ minimum=1,
126
+ maximum=50,
127
+ step=1,
128
+ value=4,
129
+ )
130
+
131
+ gr.Examples(
132
+ examples=examples,
133
+ fn=infer,
134
+ inputs=[prompt],
135
+ outputs=[result, seed],
136
+ cache_examples="lazy"
137
+ )
138
+
139
+ gr.on(
140
+ triggers=[run_button.click, prompt.submit],
141
+ fn=infer,
142
+ inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
143
+ outputs=[result, seed]
144
+ )
145
 
146
+ demo.launch()
requirements.txt CHANGED
@@ -2,6 +2,6 @@ accelerate
2
  diffusers
3
  invisible_watermark
4
  torch
5
- transformers==4.42.4
6
  xformers
7
  sentencepiece
 
2
  diffusers
3
  invisible_watermark
4
  torch
5
+ transformers
6
  xformers
7
  sentencepiece