Spaces:
Runtime error
Runtime error
Jordan Legg
commited on
Commit
β’
6af450a
1
Parent(s):
c5a49a2
model compatibility
Browse files
app.py
CHANGED
@@ -2,57 +2,65 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
import torch
|
5 |
-
import spaces
|
6 |
from PIL import Image
|
7 |
from torchvision import transforms
|
8 |
from diffusers import DiffusionPipeline, AutoencoderKL
|
|
|
9 |
|
10 |
# Define constants
|
11 |
-
|
|
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
MAX_SEED = np.iinfo(np.int32).max
|
14 |
MAX_IMAGE_SIZE = 2048
|
15 |
|
16 |
-
|
17 |
-
# Load the initial VAE model for preprocessing
|
18 |
-
vae_model_name = "runwayml/stable-diffusion-v1-5"
|
19 |
-
vae = AutoencoderKL.from_pretrained(vae_model_name, subfolder="vae").to(device)
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
|
24 |
-
pipe.enable_model_cpu_offload()
|
25 |
-
pipe.vae.enable_slicing()
|
26 |
-
pipe.vae.enable_tiling()
|
27 |
-
pipe.to(device)
|
28 |
|
29 |
def preprocess_image(image, image_size):
|
30 |
preprocess = transforms.Compose([
|
31 |
-
transforms.Resize((image_size, image_size)),
|
32 |
transforms.ToTensor(),
|
33 |
transforms.Normalize([0.5], [0.5])
|
34 |
])
|
35 |
-
image = preprocess(image).unsqueeze(0).to(device, dtype=
|
36 |
print("Image processed successfully.")
|
37 |
return image
|
38 |
|
39 |
def encode_image(image, vae):
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
|
45 |
@spaces.GPU()
|
46 |
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
47 |
if randomize_seed:
|
48 |
seed = random.randint(0, MAX_SEED)
|
49 |
-
generator = torch.Generator().manual_seed(seed)
|
50 |
|
51 |
fallback_image = Image.new("RGB", (width, height), (255, 0, 0)) # Red image as a fallback
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
result = pipe(
|
57 |
prompt=prompt,
|
58 |
height=height,
|
@@ -62,53 +70,34 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, he
|
|
62 |
guidance_scale=0.0,
|
63 |
max_sequence_length=256
|
64 |
)
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
# Ensure the latents size matches the expected input size for the FLUX model
|
83 |
-
print("Interpolating latents to match model's input size...")
|
84 |
-
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8))
|
85 |
-
|
86 |
-
latent_channels = 16 # Using FLUX VAE latent channels
|
87 |
-
print(f"Latent channels from VAE: {latent_channels}, expected by FLUX model: {pipe.vae.config.latent_channels}")
|
88 |
-
|
89 |
-
if latent_channels != pipe.vae.config.latent_channels:
|
90 |
-
print(f"Adjusting latent channels from {latent_channels} to {pipe.vae.config.latent_channels}")
|
91 |
-
conv = torch.nn.Conv2d(latent_channels, pipe.vae.config.latent_channels, kernel_size=1).to(device, dtype=dtype)
|
92 |
-
latents = conv(latents)
|
93 |
-
|
94 |
-
latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, pipe.vae.config.latent_channels)
|
95 |
-
print(f"Latents shape after permutation: {latents.shape}")
|
96 |
-
|
97 |
-
try:
|
98 |
-
print("Sending latents to the FLUX transformer...")
|
99 |
-
# Determine if 'timesteps' is required for the transformer
|
100 |
-
if hasattr(pipe.transformer, 'forward') and hasattr(pipe.transformer.forward, '__code__') and 'timesteps' in pipe.transformer.forward.__code__.co_varnames:
|
101 |
-
timestep = torch.tensor([num_inference_steps], device=device, dtype=dtype)
|
102 |
-
_ = pipe.transformer(latents, timesteps=timestep)
|
103 |
-
else:
|
104 |
-
_ = pipe.transformer(latents)
|
105 |
-
except Exception as e:
|
106 |
-
print(f"Transformer call failed with error: {e}. Skipping transformer step.")
|
107 |
-
return fallback_image, seed
|
108 |
-
|
109 |
-
try:
|
110 |
-
print("Generating final image with the FLUX pipeline...")
|
111 |
-
image = pipe(
|
112 |
prompt=prompt,
|
113 |
height=height,
|
114 |
width=width,
|
@@ -116,13 +105,13 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, he
|
|
116 |
generator=generator,
|
117 |
guidance_scale=0.0,
|
118 |
latents=latents
|
119 |
-
)
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
|
127 |
# Define example prompts
|
128 |
examples = [
|
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
import torch
|
|
|
5 |
from PIL import Image
|
6 |
from torchvision import transforms
|
7 |
from diffusers import DiffusionPipeline, AutoencoderKL
|
8 |
+
import spaces
|
9 |
|
10 |
# Define constants
|
11 |
+
flux_dtype = torch.bfloat16
|
12 |
+
vae_dtype = torch.float32
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
MAX_IMAGE_SIZE = 2048
|
16 |
|
17 |
+
def load_models():
|
18 |
+
# Load the initial VAE model for preprocessing in float32
|
19 |
+
vae_model_name = "runwayml/stable-diffusion-v1-5"
|
20 |
+
vae = AutoencoderKL.from_pretrained(vae_model_name, subfolder="vae").to(device).to(vae_dtype)
|
21 |
+
|
22 |
+
# Load the FLUX diffusion pipeline with bfloat16
|
23 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=flux_dtype)
|
24 |
+
pipe.enable_model_cpu_offload()
|
25 |
+
pipe.vae.enable_slicing()
|
26 |
+
pipe.vae.enable_tiling()
|
27 |
+
pipe.to(device)
|
28 |
+
|
29 |
+
return vae, pipe
|
30 |
|
31 |
+
vae, pipe = load_models()
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
def preprocess_image(image, image_size):
|
34 |
preprocess = transforms.Compose([
|
35 |
+
transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.LANCZOS),
|
36 |
transforms.ToTensor(),
|
37 |
transforms.Normalize([0.5], [0.5])
|
38 |
])
|
39 |
+
image = preprocess(image).unsqueeze(0).to(device, dtype=vae_dtype)
|
40 |
print("Image processed successfully.")
|
41 |
return image
|
42 |
|
43 |
def encode_image(image, vae):
|
44 |
+
try:
|
45 |
+
with torch.no_grad():
|
46 |
+
latents = vae.encode(image).latent_dist.sample() * 0.18215
|
47 |
+
print("Image encoded successfully.")
|
48 |
+
return latents
|
49 |
+
except RuntimeError as e:
|
50 |
+
print(f"Error during image encoding: {e}")
|
51 |
+
raise
|
52 |
|
53 |
@spaces.GPU()
|
54 |
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
55 |
if randomize_seed:
|
56 |
seed = random.randint(0, MAX_SEED)
|
57 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
58 |
|
59 |
fallback_image = Image.new("RGB", (width, height), (255, 0, 0)) # Red image as a fallback
|
60 |
|
61 |
+
try:
|
62 |
+
if init_image is None:
|
63 |
+
# text2img case
|
64 |
result = pipe(
|
65 |
prompt=prompt,
|
66 |
height=height,
|
|
|
70 |
guidance_scale=0.0,
|
71 |
max_sequence_length=256
|
72 |
)
|
73 |
+
else:
|
74 |
+
# img2img case
|
75 |
+
print("Initial image provided, starting preprocessing...")
|
76 |
+
vae_image_size = 1024 # Using FLUX VAE sample size for preprocessing
|
77 |
+
init_image = init_image.convert("RGB")
|
78 |
+
init_image = preprocess_image(init_image, vae_image_size)
|
79 |
+
|
80 |
+
print("Starting encoding of the image...")
|
81 |
+
latents = encode_image(init_image, vae)
|
82 |
+
|
83 |
+
print(f"Latents shape after encoding: {latents.shape}")
|
84 |
+
|
85 |
+
# Ensure the latents size matches the expected input size for the FLUX model
|
86 |
+
print("Interpolating latents to match model's input size...")
|
87 |
+
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear')
|
88 |
+
|
89 |
+
latent_channels = latents.shape[1]
|
90 |
+
print(f"Latent channels from VAE: {latent_channels}, expected by FLUX model: {pipe.vae.config.latent_channels}")
|
91 |
+
|
92 |
+
if latent_channels != pipe.vae.config.latent_channels:
|
93 |
+
print(f"Adjusting latent channels from {latent_channels} to {pipe.vae.config.latent_channels}")
|
94 |
+
conv = torch.nn.Conv2d(latent_channels, pipe.vae.config.latent_channels, kernel_size=1).to(device, dtype=flux_dtype)
|
95 |
+
latents = conv(latents.to(flux_dtype))
|
96 |
+
|
97 |
+
latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, pipe.vae.config.latent_channels)
|
98 |
+
print(f"Latents shape after permutation: {latents.shape}")
|
99 |
|
100 |
+
result = pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
prompt=prompt,
|
102 |
height=height,
|
103 |
width=width,
|
|
|
105 |
generator=generator,
|
106 |
guidance_scale=0.0,
|
107 |
latents=latents
|
108 |
+
)
|
109 |
+
|
110 |
+
image = result.images[0]
|
111 |
+
return image, seed
|
112 |
+
except Exception as e:
|
113 |
+
print(f"Error during inference: {e}")
|
114 |
+
return fallback_image, seed
|
115 |
|
116 |
# Define example prompts
|
117 |
examples = [
|