Spaces:
Runtime error
Runtime error
Jordan Legg
commited on
Commit
β’
945b578
1
Parent(s):
13a0d1c
added upscaling
Browse files- app.py +37 -27
- requirements.txt +1 -2
app.py
CHANGED
@@ -4,16 +4,20 @@ import numpy as np
|
|
4 |
import random
|
5 |
import torch
|
6 |
from diffusers import DiffusionPipeline
|
|
|
|
|
7 |
|
8 |
dtype = torch.bfloat16
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
11 |
-
|
12 |
MAX_SEED = np.iinfo(np.int32).max
|
13 |
MAX_IMAGE_SIZE = 2048
|
14 |
|
|
|
|
|
|
|
15 |
@spaces.GPU()
|
16 |
-
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
17 |
if randomize_seed:
|
18 |
seed = random.randint(0, MAX_SEED)
|
19 |
generator = torch.Generator().manual_seed(seed)
|
@@ -25,15 +29,22 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_in
|
|
25 |
generator=generator,
|
26 |
guidance_scale=0.0
|
27 |
).images[0]
|
|
|
|
|
|
|
|
|
28 |
return image, seed
|
29 |
|
|
|
|
|
|
|
|
|
30 |
# Example prompt
|
31 |
example_prompt = "A vibrant red origami crane on a white background, intricate paper folds, studio lighting"
|
32 |
|
33 |
# Gradio interface
|
34 |
with gr.Blocks() as demo:
|
35 |
-
gr.Markdown("# FLUX.1 [schnell] Image Generator")
|
36 |
-
|
37 |
with gr.Row():
|
38 |
with gr.Column(scale=2):
|
39 |
gr.Markdown("""
|
@@ -46,32 +57,30 @@ with gr.Blocks() as demo:
|
|
46 |
- Uses advanced transformer architecture with flow matching techniques
|
47 |
- Capable of generating high-quality images in just a few inference steps
|
48 |
""")
|
49 |
-
|
50 |
with gr.Column(scale=3):
|
51 |
prompt = gr.Textbox(label="Prompt", placeholder="Enter your image description here...", value=example_prompt)
|
52 |
run_button = gr.Button("Generate")
|
53 |
result = gr.Image(label="Generated Image")
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
gr.Markdown("""
|
76 |
## Additional Information
|
77 |
- FLUX.1 [schnell] is based on a hybrid architecture of multimodal and parallel diffusion transformer blocks
|
@@ -79,11 +88,12 @@ with gr.Blocks() as demo:
|
|
79 |
- The model uses bfloat16 precision for efficient computation
|
80 |
- For optimal performance, running on a CUDA-enabled GPU is recommended
|
81 |
- For more details and other FLUX.1 variants, visit [Black Forest Labs](https://blackforestlabs.ai)
|
|
|
82 |
""")
|
83 |
|
84 |
run_button.click(
|
85 |
infer,
|
86 |
-
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
|
87 |
outputs=[result, seed]
|
88 |
)
|
89 |
|
|
|
4 |
import random
|
5 |
import torch
|
6 |
from diffusers import DiffusionPipeline
|
7 |
+
from PIL import Image
|
8 |
+
from aura_sr import AuraSR
|
9 |
|
10 |
dtype = torch.bfloat16
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
|
|
13 |
MAX_SEED = np.iinfo(np.int32).max
|
14 |
MAX_IMAGE_SIZE = 2048
|
15 |
|
16 |
+
# Initialize AuraSR model
|
17 |
+
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")
|
18 |
+
|
19 |
@spaces.GPU()
|
20 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, upscale=False, progress=gr.Progress(track_tqdm=True)):
|
21 |
if randomize_seed:
|
22 |
seed = random.randint(0, MAX_SEED)
|
23 |
generator = torch.Generator().manual_seed(seed)
|
|
|
29 |
generator=generator,
|
30 |
guidance_scale=0.0
|
31 |
).images[0]
|
32 |
+
|
33 |
+
if upscale:
|
34 |
+
image = upscale_image(image)
|
35 |
+
|
36 |
return image, seed
|
37 |
|
38 |
+
@spaces.GPU()
|
39 |
+
def upscale_image(image):
|
40 |
+
return aura_sr.upscale_4x(image)
|
41 |
+
|
42 |
# Example prompt
|
43 |
example_prompt = "A vibrant red origami crane on a white background, intricate paper folds, studio lighting"
|
44 |
|
45 |
# Gradio interface
|
46 |
with gr.Blocks() as demo:
|
47 |
+
gr.Markdown("# FLUX.1 [schnell] Image Generator with AuraSR V2 Upscaling")
|
|
|
48 |
with gr.Row():
|
49 |
with gr.Column(scale=2):
|
50 |
gr.Markdown("""
|
|
|
57 |
- Uses advanced transformer architecture with flow matching techniques
|
58 |
- Capable of generating high-quality images in just a few inference steps
|
59 |
""")
|
|
|
60 |
with gr.Column(scale=3):
|
61 |
prompt = gr.Textbox(label="Prompt", placeholder="Enter your image description here...", value=example_prompt)
|
62 |
run_button = gr.Button("Generate")
|
63 |
result = gr.Image(label="Generated Image")
|
64 |
+
gr.Markdown("""
|
65 |
+
## Example Prompt
|
66 |
+
Try this example prompt or modify it to see how FLUX.1 [schnell] performs:
|
67 |
+
```
|
68 |
+
A vibrant red origami crane on a white background, intricate paper folds, studio lighting
|
69 |
+
```
|
70 |
+
""")
|
71 |
+
with gr.Accordion("Advanced Settings", open=False):
|
72 |
+
seed = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, label="Seed", randomize=True)
|
73 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
74 |
+
width = gr.Slider(minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, label="Width")
|
75 |
+
height = gr.Slider(minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, label="Height")
|
76 |
+
num_inference_steps = gr.Slider(minimum=1, maximum=50, step=1, value=4, label="Number of inference steps")
|
77 |
+
upscale = gr.Checkbox(label="Upscale with AuraSR V2", value=False)
|
78 |
+
gr.Markdown("""
|
79 |
+
**Note:** FLUX.1 [schnell] is optimized for speed and can produce high-quality results with just a few inference steps.
|
80 |
+
Adjust the number of steps based on your speed/quality preference. More steps may improve quality but will increase generation time.
|
81 |
+
|
82 |
+
The upscaling option uses AuraSR V2 to increase the resolution of the generated image by 4x. This may significantly increase processing time.
|
83 |
+
""")
|
|
|
84 |
gr.Markdown("""
|
85 |
## Additional Information
|
86 |
- FLUX.1 [schnell] is based on a hybrid architecture of multimodal and parallel diffusion transformer blocks
|
|
|
88 |
- The model uses bfloat16 precision for efficient computation
|
89 |
- For optimal performance, running on a CUDA-enabled GPU is recommended
|
90 |
- For more details and other FLUX.1 variants, visit [Black Forest Labs](https://blackforestlabs.ai)
|
91 |
+
- The upscaling feature uses AuraSR V2, an open reproduction of the GigaGAN Upscaler from fal.ai
|
92 |
""")
|
93 |
|
94 |
run_button.click(
|
95 |
infer,
|
96 |
+
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps, upscale],
|
97 |
outputs=[result, seed]
|
98 |
)
|
99 |
|
requirements.txt
CHANGED
@@ -5,6 +5,5 @@ torch
|
|
5 |
transformers==4.42.4
|
6 |
xformers
|
7 |
sentencepiece
|
8 |
-
|
9 |
-
torchvision
|
10 |
pillow
|
|
|
5 |
transformers==4.42.4
|
6 |
xformers
|
7 |
sentencepiece
|
8 |
+
aura-sr
|
|
|
9 |
pillow
|