Spaces:
Runtime error
Runtime error
Jordan Legg
commited on
Commit
β’
d2b0012
1
Parent(s):
d53c0bb
simplification
Browse files
app.py
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
-
# Import spaces first to avoid CUDA initialization conflicts
|
2 |
import spaces
|
3 |
-
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import random
|
@@ -9,36 +7,19 @@ from PIL import Image
|
|
9 |
from torchvision import transforms
|
10 |
from diffusers import DiffusionPipeline, AutoencoderKL
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
MAX_IMAGE_SIZE = 2048
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
vae_model_name = "runwayml/stable-diffusion-v1-5"
|
24 |
-
vae = AutoencoderKL.from_pretrained(vae_model_name, subfolder="vae").to(device).to(vae_dtype)
|
25 |
-
|
26 |
-
# Load the FLUX diffusion pipeline with bfloat16
|
27 |
-
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=flux_dtype)
|
28 |
-
pipe.enable_model_cpu_offload()
|
29 |
-
pipe.vae.enable_slicing()
|
30 |
-
pipe.vae.enable_tiling()
|
31 |
-
pipe.to(device)
|
32 |
-
|
33 |
-
return vae, pipe
|
34 |
-
|
35 |
-
# Defer model loading until it's needed
|
36 |
-
vae, pipe = None, None
|
37 |
|
38 |
-
|
39 |
-
global vae, pipe
|
40 |
-
if vae is None or pipe is None:
|
41 |
-
vae, pipe = load_models()
|
42 |
|
43 |
def preprocess_image(image, image_size):
|
44 |
preprocess = transforms.Compose([
|
@@ -46,70 +27,46 @@ def preprocess_image(image, image_size):
|
|
46 |
transforms.ToTensor(),
|
47 |
transforms.Normalize([0.5], [0.5])
|
48 |
])
|
49 |
-
image = preprocess(image).unsqueeze(0).to(device, dtype=
|
50 |
-
print("Image processed successfully.")
|
51 |
return image
|
52 |
|
53 |
-
def encode_image(image
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
print("Image encoded successfully.")
|
58 |
-
return latents
|
59 |
-
except RuntimeError as e:
|
60 |
-
print(f"Error during image encoding: {e}")
|
61 |
-
raise
|
62 |
|
63 |
@spaces.GPU()
|
64 |
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
65 |
-
ensure_models_loaded()
|
66 |
-
|
67 |
if randomize_seed:
|
68 |
seed = random.randint(0, MAX_SEED)
|
69 |
generator = torch.Generator(device=device).manual_seed(seed)
|
70 |
|
71 |
-
fallback_image = Image.new("RGB", (width, height), (255, 0, 0)) # Red image as a fallback
|
72 |
-
|
73 |
try:
|
74 |
if init_image is None:
|
75 |
# text2img case
|
76 |
-
|
77 |
prompt=prompt,
|
78 |
height=height,
|
79 |
width=width,
|
80 |
num_inference_steps=num_inference_steps,
|
81 |
generator=generator,
|
82 |
-
guidance_scale=0.0
|
83 |
-
|
84 |
-
)
|
85 |
else:
|
86 |
# img2img case
|
87 |
-
print("Initial image provided, starting preprocessing...")
|
88 |
-
vae_image_size = 1024 # Using FLUX VAE sample size for preprocessing
|
89 |
init_image = init_image.convert("RGB")
|
90 |
-
init_image = preprocess_image(init_image,
|
91 |
-
|
92 |
-
print("Starting encoding of the image...")
|
93 |
-
latents = encode_image(init_image, vae)
|
94 |
|
95 |
-
print(f"Latents shape after encoding: {latents.shape}")
|
96 |
-
|
97 |
-
# Ensure the latents size matches the expected input size for the FLUX model
|
98 |
-
print("Interpolating latents to match model's input size...")
|
99 |
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear')
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
if latent_channels != pipe.vae.config.latent_channels:
|
105 |
-
print(f"Adjusting latent channels from {latent_channels} to {pipe.vae.config.latent_channels}")
|
106 |
-
conv = torch.nn.Conv2d(latent_channels, pipe.vae.config.latent_channels, kernel_size=1).to(device, dtype=flux_dtype)
|
107 |
-
latents = conv(latents.to(flux_dtype))
|
108 |
|
109 |
latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, pipe.vae.config.latent_channels)
|
110 |
-
print(f"Latents shape after permutation: {latents.shape}")
|
111 |
|
112 |
-
|
113 |
prompt=prompt,
|
114 |
height=height,
|
115 |
width=width,
|
@@ -117,129 +74,37 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, he
|
|
117 |
generator=generator,
|
118 |
guidance_scale=0.0,
|
119 |
latents=latents
|
120 |
-
)
|
121 |
-
|
122 |
-
image = result.images[0]
|
123 |
return image, seed
|
124 |
except Exception as e:
|
125 |
print(f"Error during inference: {e}")
|
126 |
-
return
|
127 |
-
|
128 |
-
# ... (rest of the Gradio interface code remains the same)
|
129 |
-
|
130 |
-
# Define example prompts
|
131 |
-
examples = [
|
132 |
-
"a tiny astronaut hatching from an egg on the moon",
|
133 |
-
"a cat holding a sign that says hello world",
|
134 |
-
"an anime illustration of a wiener schnitzel",
|
135 |
-
]
|
136 |
-
|
137 |
-
# CSS styling for the Japanese-inspired interface
|
138 |
-
css = """
|
139 |
-
body {
|
140 |
-
background-color: #fff;
|
141 |
-
font-family: 'Noto Sans JP', sans-serif;
|
142 |
-
color: #333;
|
143 |
-
}
|
144 |
-
#col-container {
|
145 |
-
margin: 0 auto;
|
146 |
-
max-width: 520px;
|
147 |
-
border: 2px solid #000;
|
148 |
-
padding: 20px;
|
149 |
-
background-color: #f7f7f7;
|
150 |
-
border-radius: 10px;
|
151 |
-
}
|
152 |
-
.gr-button {
|
153 |
-
background-color: #e60012;
|
154 |
-
color: #fff;
|
155 |
-
border: 2px solid #000;
|
156 |
-
}
|
157 |
-
.gr-button:hover {
|
158 |
-
background-color: #c20010;
|
159 |
-
}
|
160 |
-
.gr-slider, .gr-checkbox, .gr-textbox {
|
161 |
-
border: 2px solid #000;
|
162 |
-
}
|
163 |
-
.gr-accordion {
|
164 |
-
border: 2px solid #000;
|
165 |
-
background-color: #fff;
|
166 |
-
}
|
167 |
-
.gr-image {
|
168 |
-
border: 2px solid #000;
|
169 |
-
}
|
170 |
-
"""
|
171 |
-
|
172 |
-
# Create the Gradio interface
|
173 |
-
with gr.Blocks(css=css) as demo:
|
174 |
-
|
175 |
-
with gr.Column(elem_id="col-container"):
|
176 |
-
gr.Markdown("""
|
177 |
-
# FLUX.1 [schnell]
|
178 |
-
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
|
179 |
-
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
|
180 |
-
""")
|
181 |
-
|
182 |
-
with gr.Row():
|
183 |
-
prompt = gr.Textbox(
|
184 |
-
label="Prompt",
|
185 |
-
show_label=False,
|
186 |
-
max_lines=1,
|
187 |
-
placeholder="Enter your prompt",
|
188 |
-
container=False,
|
189 |
-
)
|
190 |
-
run_button = gr.Button("Run", scale=0)
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
step=32,
|
212 |
-
value=1024,
|
213 |
-
)
|
214 |
-
height = gr.Slider(
|
215 |
-
label="Height",
|
216 |
-
minimum=256,
|
217 |
-
maximum=MAX_IMAGE_SIZE,
|
218 |
-
step=32,
|
219 |
-
value=1024,
|
220 |
-
)
|
221 |
-
|
222 |
-
with gr.Row():
|
223 |
-
num_inference_steps = gr.Slider(
|
224 |
-
label="Number of inference steps",
|
225 |
-
minimum=1,
|
226 |
-
maximum=50,
|
227 |
-
step=1,
|
228 |
-
value=4,
|
229 |
-
)
|
230 |
-
|
231 |
-
gr.Examples(
|
232 |
-
examples=examples,
|
233 |
-
fn=infer,
|
234 |
-
inputs=[prompt],
|
235 |
-
outputs=[result, seed],
|
236 |
-
cache_examples="lazy"
|
237 |
-
)
|
238 |
-
|
239 |
-
run_button.click(
|
240 |
infer,
|
241 |
inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps],
|
242 |
-
outputs=[result,
|
243 |
)
|
244 |
|
245 |
-
demo.launch()
|
|
|
|
|
1 |
import spaces
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import random
|
|
|
7 |
from torchvision import transforms
|
8 |
from diffusers import DiffusionPipeline, AutoencoderKL
|
9 |
|
10 |
+
# Constants
|
11 |
+
dtype = torch.bfloat16
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
MAX_SEED = np.iinfo(np.int32).max
|
14 |
MAX_IMAGE_SIZE = 2048
|
15 |
|
16 |
+
# Load models
|
17 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
18 |
+
pipe.enable_model_cpu_offload()
|
19 |
+
pipe.vae.enable_slicing()
|
20 |
+
pipe.vae.enable_tiling()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae").to(device)
|
|
|
|
|
|
|
23 |
|
24 |
def preprocess_image(image, image_size):
|
25 |
preprocess = transforms.Compose([
|
|
|
27 |
transforms.ToTensor(),
|
28 |
transforms.Normalize([0.5], [0.5])
|
29 |
])
|
30 |
+
image = preprocess(image).unsqueeze(0).to(device, dtype=torch.float32)
|
|
|
31 |
return image
|
32 |
|
33 |
+
def encode_image(image):
|
34 |
+
with torch.no_grad():
|
35 |
+
latents = vae.encode(image).latent_dist.sample() * 0.18215
|
36 |
+
return latents
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
@spaces.GPU()
|
39 |
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
40 |
if randomize_seed:
|
41 |
seed = random.randint(0, MAX_SEED)
|
42 |
generator = torch.Generator(device=device).manual_seed(seed)
|
43 |
|
|
|
|
|
44 |
try:
|
45 |
if init_image is None:
|
46 |
# text2img case
|
47 |
+
image = pipe(
|
48 |
prompt=prompt,
|
49 |
height=height,
|
50 |
width=width,
|
51 |
num_inference_steps=num_inference_steps,
|
52 |
generator=generator,
|
53 |
+
guidance_scale=0.0
|
54 |
+
).images[0]
|
|
|
55 |
else:
|
56 |
# img2img case
|
|
|
|
|
57 |
init_image = init_image.convert("RGB")
|
58 |
+
init_image = preprocess_image(init_image, 1024) # Using 1024 as FLUX VAE sample size
|
59 |
+
latents = encode_image(init_image)
|
|
|
|
|
60 |
|
|
|
|
|
|
|
|
|
61 |
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear')
|
62 |
|
63 |
+
if latents.shape[1] != pipe.vae.config.latent_channels:
|
64 |
+
conv = torch.nn.Conv2d(latents.shape[1], pipe.vae.config.latent_channels, kernel_size=1).to(device, dtype=dtype)
|
65 |
+
latents = conv(latents.to(dtype))
|
|
|
|
|
|
|
|
|
66 |
|
67 |
latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, pipe.vae.config.latent_channels)
|
|
|
68 |
|
69 |
+
image = pipe(
|
70 |
prompt=prompt,
|
71 |
height=height,
|
72 |
width=width,
|
|
|
74 |
generator=generator,
|
75 |
guidance_scale=0.0,
|
76 |
latents=latents
|
77 |
+
).images[0]
|
78 |
+
|
|
|
79 |
return image, seed
|
80 |
except Exception as e:
|
81 |
print(f"Error during inference: {e}")
|
82 |
+
return Image.new("RGB", (width, height), (255, 0, 0)), seed # Red fallback image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
# Gradio interface setup
|
85 |
+
with gr.Blocks() as demo:
|
86 |
+
with gr.Row():
|
87 |
+
prompt = gr.Textbox(label="Prompt")
|
88 |
+
init_image = gr.Image(label="Initial Image (optional)", type="pil")
|
89 |
|
90 |
+
with gr.Row():
|
91 |
+
generate = gr.Button("Generate")
|
92 |
+
|
93 |
+
with gr.Row():
|
94 |
+
result = gr.Image(label="Result")
|
95 |
+
seed_output = gr.Number(label="Seed")
|
96 |
+
|
97 |
+
with gr.Accordion("Advanced Settings", open=False):
|
98 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
|
99 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
100 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
101 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
102 |
+
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=4)
|
103 |
+
|
104 |
+
generate.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
infer,
|
106 |
inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps],
|
107 |
+
outputs=[result, seed_output]
|
108 |
)
|
109 |
|
110 |
+
demo.launch()
|