Jordan Legg commited on
Commit
d2cb214
β€’
1 Parent(s): 2965592

update to schell fp8

Browse files
Files changed (2) hide show
  1. app.py +46 -77
  2. requirements.txt +4 -3
app.py CHANGED
@@ -1,46 +1,46 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
- from diffusers import DiffusionPipeline
5
  import torch
 
 
 
 
 
6
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
-
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
 
 
 
23
  if randomize_seed:
24
  seed = random.randint(0, MAX_SEED)
25
-
26
  generator = torch.Generator().manual_seed(seed)
27
-
28
  image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
- return image
39
 
40
  examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
  ]
45
 
46
  css="""
@@ -50,21 +50,13 @@ css="""
50
  }
51
  """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
  with gr.Blocks(css=css) as demo:
59
-
60
  with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
  """)
65
-
66
  with gr.Row():
67
-
68
  prompt = gr.Text(
69
  label="Prompt",
70
  show_label=False,
@@ -72,20 +64,9 @@ with gr.Blocks(css=css) as demo:
72
  placeholder="Enter your prompt",
73
  container=False,
74
  )
75
-
76
  run_button = gr.Button("Run", scale=0)
77
-
78
  result = gr.Image(label="Result", show_label=False)
79
-
80
  with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
  seed = gr.Slider(
90
  label="Seed",
91
  minimum=0,
@@ -93,54 +74,42 @@ with gr.Blocks(css=css) as demo:
93
  step=1,
94
  value=0,
95
  )
96
-
97
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
  with gr.Row():
100
-
101
  width = gr.Slider(
102
  label="Width",
103
  minimum=256,
104
  maximum=MAX_IMAGE_SIZE,
105
  step=32,
106
- value=512,
107
  )
108
-
109
  height = gr.Slider(
110
  label="Height",
111
  minimum=256,
112
  maximum=MAX_IMAGE_SIZE,
113
  step=32,
114
- value=512,
115
  )
116
-
117
  with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
  num_inference_steps = gr.Slider(
128
  label="Number of inference steps",
129
  minimum=1,
130
- maximum=12,
131
  step=1,
132
- value=2,
133
  )
134
-
135
  gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
 
 
 
 
 
 
 
 
 
138
  )
139
 
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
- )
145
-
146
- demo.queue().launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
+ import spaces
5
  import torch
6
+ from diffusers import DiffusionPipeline
7
+
8
+ # Enable TF32 for A100 (this is a form of FP8 computation)
9
+ torch.backends.cuda.matmul.allow_tf32 = True
10
+ torch.backends.cudnn.allow_tf32 = True
11
 
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
13
+ dtype = torch.float16 # Use float16 for loading
14
 
15
+ pipe = DiffusionPipeline.from_pretrained(
16
+ "Kijai/flux-fp8",
17
+ torch_dtype=dtype,
18
+ revision="main",
19
+ filename="flux1-schnell-fp8.safetensors"
20
+ ).to(device)
 
 
21
 
22
  MAX_SEED = np.iinfo(np.int32).max
23
+ MAX_IMAGE_SIZE = 2048
 
 
24
 
25
+ @spaces.GPU()
26
+ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
27
  if randomize_seed:
28
  seed = random.randint(0, MAX_SEED)
 
29
  generator = torch.Generator().manual_seed(seed)
 
30
  image = pipe(
31
+ prompt=prompt,
32
+ width=width,
33
+ height=height,
34
+ num_inference_steps=num_inference_steps,
35
+ generator=generator,
36
+ guidance_scale=0.0
37
+ ).images[0]
38
+ return image, seed
 
 
39
 
40
  examples = [
41
+ "a tiny astronaut hatching from an egg on the moon",
42
+ "a cat holding a sign that says hello world",
43
+ "an anime illustration of a wiener schnitzel",
44
  ]
45
 
46
  css="""
 
50
  }
51
  """
52
 
 
 
 
 
 
53
  with gr.Blocks(css=css) as demo:
 
54
  with gr.Column(elem_id="col-container"):
55
+ gr.Markdown(f"""# FLUX.1 [schnell] FP8
56
+ 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
57
+ [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/Kijai/flux-fp8)]
58
  """)
 
59
  with gr.Row():
 
60
  prompt = gr.Text(
61
  label="Prompt",
62
  show_label=False,
 
64
  placeholder="Enter your prompt",
65
  container=False,
66
  )
 
67
  run_button = gr.Button("Run", scale=0)
 
68
  result = gr.Image(label="Result", show_label=False)
 
69
  with gr.Accordion("Advanced Settings", open=False):
 
 
 
 
 
 
 
 
70
  seed = gr.Slider(
71
  label="Seed",
72
  minimum=0,
 
74
  step=1,
75
  value=0,
76
  )
 
77
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
 
78
  with gr.Row():
 
79
  width = gr.Slider(
80
  label="Width",
81
  minimum=256,
82
  maximum=MAX_IMAGE_SIZE,
83
  step=32,
84
+ value=1024,
85
  )
 
86
  height = gr.Slider(
87
  label="Height",
88
  minimum=256,
89
  maximum=MAX_IMAGE_SIZE,
90
  step=32,
91
+ value=1024,
92
  )
 
93
  with gr.Row():
 
 
 
 
 
 
 
 
 
94
  num_inference_steps = gr.Slider(
95
  label="Number of inference steps",
96
  minimum=1,
97
+ maximum=50,
98
  step=1,
99
+ value=4,
100
  )
 
101
  gr.Examples(
102
+ examples=examples,
103
+ fn=infer,
104
+ inputs=[prompt],
105
+ outputs=[result, seed],
106
+ cache_examples="lazy"
107
+ )
108
+ gr.on(
109
+ triggers=[run_button.click, prompt.submit],
110
+ fn=infer,
111
+ inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
112
+ outputs=[result, seed]
113
  )
114
 
115
+ demo.launch()
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,6 +1,7 @@
1
  accelerate
2
- diffusers
3
  invisible_watermark
4
  torch
5
- transformers
6
- xformers
 
 
1
  accelerate
2
+ git+https://github.com/huggingface/diffusers.git@flux-pipeline
3
  invisible_watermark
4
  torch
5
+ transformers==4.42.4
6
+ xformers
7
+ sentencepiece