import gradio as gr import torch import spaces from diffusers import FluxPipeline device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float16 if torch.cuda.is_available() else torch.float32 MODEL_ID = "drbaph/FLUX.1-schnell-dev-merged-fp8-4step" MODEL_FILE = "flux1-schnell-dev-merged-fp8-4step.safetensors" def load_model(): pipe = FluxPipeline.from_single_file( f"https://huggingface.co/{MODEL_ID}/resolve/main/{MODEL_FILE}", torch_dtype=dtype ) pipe.to(device) return pipe pipe = load_model() MAX_SEED = 2**32 - 1 MAX_IMAGE_SIZE = 2048 @spaces.GPU() def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = torch.randint(0, MAX_SEED, (1,)).item() generator = torch.Generator(device=device).manual_seed(seed) image = pipe( prompt=prompt, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=0.0, max_sequence_length=256 ).images[0] return image, seed # Gradio interface with gr.Blocks() as demo: gr.Markdown("# FLUX.1 [schnell-dev-merged-fp8-4step]") with gr.Row(): prompt = gr.Textbox(label="Prompt") run_button = gr.Button("Generate") with gr.Row(): result = gr.Image(label="Generated Image") seed_output = gr.Number(label="Seed Used") with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=10, step=1, value=4) inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps] run_button.click(fn=infer, inputs=inputs, outputs=[result, seed_output]) demo.launch()