import gradio as gr import numpy as np import random import spaces import torch from diffusers import DiffusionPipeline # Define constants dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 # Load the diffusion pipeline pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) @spaces.GPU() def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) if init_image is not None: # Process img2img init_image = init_image.convert("RGB") init_image = pipe.preprocess(init_image).unsqueeze(0).to(device, dtype) image = pipe( prompt=prompt, init_image=init_image, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=0.0 ).images[0] else: # Process text2img image = pipe( prompt=prompt, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=0.0 ).images[0] return image, seed # Define example prompts examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] # CSS styling for the Japanese-inspired interface css = """ body { background-color: #fff; font-family: 'Noto Sans JP', sans-serif; color: #333; } #col-container { margin: 0 auto; max-width: 520px; border: 2px solid #000; padding: 20px; background-color: #f7f7f7; border-radius: 10px; } .gr-button { background-color: #e60012; color: #fff; border: 2px solid #000; } .gr-button:hover { background-color: #c20010; } .gr-slider, .gr-checkbox, .gr-textbox { border: 2px solid #000; } .gr-accordion { border: 2px solid #000; background-color: #fff; } .gr-image { border: 2px solid #000; } """ # Create the Gradio interface with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(""" # FLUX.1 [schnell] 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)] """) with gr.Row(): prompt = gr.Textbox( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) with gr.Row(): init_image = gr.Image(label="Initial Image (optional)", type="pil") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=4, ) gr.Examples( examples=examples, fn=infer, inputs=[prompt], outputs=[result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps], outputs=[result, seed] ) demo.launch()