Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,943 Bytes
73c83cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import gradio as gr
import argparse, torch, os
from PIL import Image
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL
from typing import List
from util.common import open_folder
from util.image import pil_to_binary_mask, save_output_image
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
from util.pipeline import quantize_4bit, restart_cpu_offload, torch_gc
parser = argparse.ArgumentParser()
parser.add_argument("--share", type=str, default=False, help="Set to True to share the app publicly.")
parser.add_argument("--lowvram", action="store_true", help="Enable CPU offload for model operations.")
parser.add_argument("--load_mode", default=None, type=str, choices=["4bit", "8bit"], help="Quantization mode for optimization memory consumption")
parser.add_argument("--fixed_vae", action="store_true", default=True, help="Use fixed vae for FP16.")
args = parser.parse_args()
load_mode = args.load_mode
fixed_vae = args.fixed_vae
dtype = torch.float16
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = 'yisol/IDM-VTON'
vae_model_id = 'madebyollin/sdxl-vae-fp16-fix'
dtypeQuantize = dtype
if(load_mode in ('4bit','8bit')):
dtypeQuantize = torch.float8_e4m3fn
ENABLE_CPU_OFFLOAD = args.lowvram
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.allow_tf32 = False
need_restart_cpu_offloading = False
unet = None
pipe = None
UNet_Encoder = None
example_path = os.path.join(os.path.dirname(__file__), 'example')
def start_tryon(dict, garm_img, garment_des, category, is_checked, is_checked_crop, denoise_steps, is_randomize_seed, seed, number_of_images):
global pipe, unet, UNet_Encoder, need_restart_cpu_offloading
if pipe == None:
unet = UNet2DConditionModel.from_pretrained(
model_id,
subfolder="unet",
torch_dtype=dtypeQuantize,
)
if load_mode == '4bit':
quantize_4bit(unet)
unet.requires_grad_(False)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
model_id,
subfolder="image_encoder",
torch_dtype=torch.float16,
)
if load_mode == '4bit':
quantize_4bit(image_encoder)
if fixed_vae:
vae = AutoencoderKL.from_pretrained(vae_model_id, torch_dtype=dtype)
else:
vae = AutoencoderKL.from_pretrained(model_id,
subfolder="vae",
torch_dtype=dtype,
)
# "stabilityai/stable-diffusion-xl-base-1.0",
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
model_id,
subfolder="unet_encoder",
torch_dtype=dtypeQuantize,
)
if load_mode == '4bit':
quantize_4bit(UNet_Encoder)
UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
pipe_param = {
'pretrained_model_name_or_path': model_id,
'unet': unet,
'torch_dtype': dtype,
'vae': vae,
'image_encoder': image_encoder,
'feature_extractor': CLIPImageProcessor(),
}
pipe = TryonPipeline.from_pretrained(**pipe_param).to(device)
pipe.unet_encoder = UNet_Encoder
pipe.unet_encoder.to(pipe.unet.device)
if load_mode == '4bit':
if pipe.text_encoder is not None:
quantize_4bit(pipe.text_encoder)
if pipe.text_encoder_2 is not None:
quantize_4bit(pipe.text_encoder_2)
else:
if ENABLE_CPU_OFFLOAD:
need_restart_cpu_offloading =True
torch_gc()
parsing_model = Parsing(0)
openpose_model = OpenPose(0)
openpose_model.preprocessor.body_estimation.model.to(device)
tensor_transfrom = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
if need_restart_cpu_offloading:
restart_cpu_offload(pipe, load_mode)
elif ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
#if load_mode != '4bit' :
# pipe.enable_xformers_memory_efficient_attention()
garm_img= garm_img.convert("RGB").resize((768,1024))
human_img_orig = dict["background"].convert("RGB")
if is_checked_crop:
width, height = human_img_orig.size
target_width = int(min(width, height * (3 / 4)))
target_height = int(min(height, width * (4 / 3)))
left = (width - target_width) / 2
top = (height - target_height) / 2
right = (width + target_width) / 2
bottom = (height + target_height) / 2
cropped_img = human_img_orig.crop((left, top, right, bottom))
crop_size = cropped_img.size
human_img = cropped_img.resize((768,1024))
else:
human_img = human_img_orig.resize((768,1024))
if is_checked:
keypoints = openpose_model(human_img.resize((384,512)))
model_parse, _ = parsing_model(human_img.resize((384,512)))
mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints)
mask = mask.resize((768,1024))
else:
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
# mask = transforms.ToTensor()(mask)
# mask = mask.unsqueeze(0)
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
mask_gray = to_pil_image((mask_gray+1.0)/2.0)
human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
# verbosity = getattr(args, "verbosity", None)
pose_img = args.func(args,human_img_arg)
pose_img = pose_img[:,:,::-1]
pose_img = Image.fromarray(pose_img).resize((768,1024))
if pipe.text_encoder is not None:
pipe.text_encoder.to(device)
if pipe.text_encoder_2 is not None:
pipe.text_encoder_2.to(device)
with torch.no_grad():
# Extract the images
with torch.cuda.amp.autocast(dtype=dtype):
with torch.no_grad():
prompt = "model is wearing " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
with torch.inference_mode():
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt = "a photo of " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * 1
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * 1
with torch.inference_mode():
(
prompt_embeds_c,
_,
_,
_,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
negative_prompt=negative_prompt,
)
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,dtype)
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,dtype)
results = []
current_seed = seed
for i in range(number_of_images):
if is_randomize_seed:
current_seed = torch.randint(0, 2**32, size=(1,)).item()
generator = torch.Generator(device).manual_seed(current_seed) if seed != -1 else None
current_seed = current_seed + i
images = pipe(
prompt_embeds=prompt_embeds.to(device,dtype),
negative_prompt_embeds=negative_prompt_embeds.to(device,dtype),
pooled_prompt_embeds=pooled_prompt_embeds.to(device,dtype),
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,dtype),
num_inference_steps=denoise_steps,
generator=generator,
strength = 1.0,
pose_img = pose_img.to(device,dtype),
text_embeds_cloth=prompt_embeds_c.to(device,dtype),
cloth = garm_tensor.to(device,dtype),
mask_image=mask,
image=human_img,
height=1024,
width=768,
ip_adapter_image = garm_img.resize((768,1024)),
guidance_scale=2.0,
dtype=dtype,
device=device,
)[0]
if is_checked_crop:
out_img = images[0].resize(crop_size)
human_img_orig.paste(out_img, (int(left), int(top)))
img_path = save_output_image(human_img_orig, base_path="outputs", base_filename='img', seed=current_seed)
results.append(img_path)
else:
img_path = save_output_image(images[0], base_path="outputs", base_filename='img')
results.append(img_path)
return results, mask_gray
garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
human_ex_list = []
for ex_human in human_list_path:
if "Jensen" in ex_human or "sam1 (1)" in ex_human:
ex_dict = {}
ex_dict['background'] = ex_human
ex_dict['layers'] = None
ex_dict['composite'] = None
human_ex_list.append(ex_dict)
image_blocks = gr.Blocks().queue()
with image_blocks as demo:
gr.Markdown("## V7 - IDM-VTON πππ improved by SECourses and DEVAIEXP: 1-Click Installers Latest Version On : https://www.patreon.com/posts/103022942")
gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)")
with gr.Row():
with gr.Column():
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
with gr.Row():
category = gr.Radio(choices=["upper_body", "lower_body", "dresses"], label="Select Garment Category", value="upper_body")
is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
with gr.Row():
is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=True)
example = gr.Examples(
inputs=imgs,
examples_per_page=2,
examples=human_ex_list
)
with gr.Column():
garm_img = gr.Image(label="Garment", sources='upload', type="pil")
with gr.Row(elem_id="prompt-container"):
with gr.Row():
prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
example = gr.Examples(
inputs=garm_img,
examples_per_page=8,
examples=garm_list_path)
with gr.Column():
with gr.Row():
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
with gr.Row():
btn_open_outputs = gr.Button("Open Outputs Folder")
btn_open_outputs.click(fn=open_folder)
with gr.Column():
with gr.Row():
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
image_gallery = gr.Gallery(label="Generated Images", show_label=True)
with gr.Row():
try_button = gr.Button(value="Try-on")
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=120, value=30, step=1)
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=1)
is_randomize_seed = gr.Checkbox(label="Randomize seed for each generated image", value=True)
number_of_images = gr.Number(label="Number Of Images To Generate (it will start from your input seed and increment by 1)", minimum=1, maximum=9999, value=1, step=1)
try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, category, is_checked, is_checked_crop, denoise_steps, is_randomize_seed, seed, number_of_images], outputs=[image_gallery, masked_img],api_name='tryon')
image_blocks.launch(inbrowser=True,share=args.share)
|