Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,983 Bytes
73c83cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Literal
from ip_adapter.ip_adapter import Resampler
import argparse
import logging
import os
import torch.utils.data as data
import torchvision
import json
import accelerate
import numpy as np
import torch
from PIL import Image, ImageDraw
import torch.nn.functional as F
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from packaging import version
from torchvision import transforms
import diffusers
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, StableDiffusionXLControlNetInpaintPipeline
from transformers import AutoTokenizer, PretrainedConfig,CLIPImageProcessor, CLIPVisionModelWithProjection,CLIPTextModelWithProjection, CLIPTextModel, CLIPTokenizer
import cv2
from diffusers.utils.import_utils import is_xformers_available
from numpy.linalg import lstsq
from src.unet_hacked_tryon import UNet2DConditionModel
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
logger = get_logger(__name__, log_level="INFO")
label_map={
"background": 0,
"hat": 1,
"hair": 2,
"sunglasses": 3,
"upper_clothes": 4,
"skirt": 5,
"pants": 6,
"dress": 7,
"belt": 8,
"left_shoe": 9,
"right_shoe": 10,
"head": 11,
"left_leg": 12,
"right_leg": 13,
"left_arm": 14,
"right_arm": 15,
"bag": 16,
"scarf": 17,
}
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument("--pretrained_model_name_or_path",type=str,default= "yisol/IDM-VTON",required=False,)
parser.add_argument("--width",type=int,default=768,)
parser.add_argument("--height",type=int,default=1024,)
parser.add_argument("--num_inference_steps",type=int,default=30,)
parser.add_argument("--output_dir",type=str,default="result",)
parser.add_argument("--category",type=str,default="upper_body",choices=["upper_body", "lower_body", "dresses"])
parser.add_argument("--unpaired",action="store_true",)
parser.add_argument("--data_dir",type=str,default="/home/omnious/workspace/yisol/Dataset/zalando")
parser.add_argument("--seed", type=int, default=42,)
parser.add_argument("--test_batch_size", type=int, default=2,)
parser.add_argument("--guidance_scale",type=float,default=2.0,)
parser.add_argument("--mixed_precision",type=str,default=None,choices=["no", "fp16", "bf16"],)
parser.add_argument("--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers.")
args = parser.parse_args()
return args
def pil_to_tensor(images):
images = np.array(images).astype(np.float32) / 255.0
images = torch.from_numpy(images.transpose(2, 0, 1))
return images
class DresscodeTestDataset(data.Dataset):
def __init__(
self,
dataroot_path: str,
phase: Literal["train", "test"],
order: Literal["paired", "unpaired"] = "paired",
category = "upper_body",
size: Tuple[int, int] = (512, 384),
):
super(DresscodeTestDataset, self).__init__()
self.dataroot = os.path.join(dataroot_path,category)
self.phase = phase
self.height = size[0]
self.width = size[1]
self.size = size
self.transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
self.toTensor = transforms.ToTensor()
self.order = order
self.radius = 5
self.category = category
im_names = []
c_names = []
if phase == "train":
filename = os.path.join(dataroot_path,category, f"{phase}_pairs.txt")
else:
filename = os.path.join(dataroot_path,category, f"{phase}_pairs_{order}.txt")
with open(filename, "r") as f:
for line in f.readlines():
im_name, c_name = line.strip().split()
im_names.append(im_name)
c_names.append(c_name)
file_path = os.path.join(dataroot_path,category,"dc_caption.txt")
self.annotation_pair = {}
with open(file_path, "r") as file:
for line in file:
parts = line.strip().split(" ")
self.annotation_pair[parts[0]] = ' '.join(parts[1:])
self.im_names = im_names
self.c_names = c_names
self.clip_processor = CLIPImageProcessor()
def __getitem__(self, index):
c_name = self.c_names[index]
im_name = self.im_names[index]
if c_name in self.annotation_pair:
cloth_annotation = self.annotation_pair[c_name]
else:
cloth_annotation = self.category
cloth = Image.open(os.path.join(self.dataroot, "images", c_name))
im_pil_big = Image.open(
os.path.join(self.dataroot, "images", im_name)
).resize((self.width,self.height))
image = self.transform(im_pil_big)
skeleton = Image.open(os.path.join(self.dataroot, 'skeletons', im_name.replace("_0", "_5")))
skeleton = skeleton.resize((self.width, self.height))
skeleton = self.transform(skeleton)
# Label Map
parse_name = im_name.replace('_0.jpg', '_4.png')
im_parse = Image.open(os.path.join(self.dataroot, 'label_maps', parse_name))
im_parse = im_parse.resize((self.width, self.height), Image.NEAREST)
parse_array = np.array(im_parse)
# Load pose points
pose_name = im_name.replace('_0.jpg', '_2.json')
with open(os.path.join(self.dataroot, 'keypoints', pose_name), 'r') as f:
pose_label = json.load(f)
pose_data = pose_label['keypoints']
pose_data = np.array(pose_data)
pose_data = pose_data.reshape((-1, 4))
point_num = pose_data.shape[0]
pose_map = torch.zeros(point_num, self.height, self.width)
r = self.radius * (self.height / 512.0)
for i in range(point_num):
one_map = Image.new('L', (self.width, self.height))
draw = ImageDraw.Draw(one_map)
point_x = np.multiply(pose_data[i, 0], self.width / 384.0)
point_y = np.multiply(pose_data[i, 1], self.height / 512.0)
if point_x > 1 and point_y > 1:
draw.rectangle((point_x - r, point_y - r, point_x + r, point_y + r), 'white', 'white')
one_map = self.toTensor(one_map)
pose_map[i] = one_map[0]
agnostic_mask = self.get_agnostic(parse_array, pose_data, self.category, (self.width,self.height))
# agnostic_mask = transforms.functional.resize(agnostic_mask, (self.height, self.width),
# interpolation=transforms.InterpolationMode.NEAREST)
mask = 1 - agnostic_mask
im_mask = image * agnostic_mask
pose_img = Image.open(
os.path.join(self.dataroot, "image-densepose", im_name)
)
pose_img = self.transform(pose_img) # [-1,1]
result = {}
result["c_name"] = c_name
result["im_name"] = im_name
result["image"] = image
result["cloth_pure"] = self.transform(cloth)
result["cloth"] = self.clip_processor(images=cloth, return_tensors="pt").pixel_values
result["inpaint_mask"] =1-mask
result["im_mask"] = im_mask
result["caption_cloth"] = "a photo of " + cloth_annotation
result["caption"] = "model is wearing a " + cloth_annotation
result["pose_img"] = pose_img
return result
def __len__(self):
# model images + cloth image
return len(self.im_names)
def get_agnostic(self,parse_array, pose_data, category, size):
parse_shape = (parse_array > 0).astype(np.float32)
parse_head = (parse_array == 1).astype(np.float32) + \
(parse_array == 2).astype(np.float32) + \
(parse_array == 3).astype(np.float32) + \
(parse_array == 11).astype(np.float32)
parser_mask_fixed = (parse_array == label_map["hair"]).astype(np.float32) + \
(parse_array == label_map["left_shoe"]).astype(np.float32) + \
(parse_array == label_map["right_shoe"]).astype(np.float32) + \
(parse_array == label_map["hat"]).astype(np.float32) + \
(parse_array == label_map["sunglasses"]).astype(np.float32) + \
(parse_array == label_map["scarf"]).astype(np.float32) + \
(parse_array == label_map["bag"]).astype(np.float32)
parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32)
arms = (parse_array == 14).astype(np.float32) + (parse_array == 15).astype(np.float32)
if category == 'dresses':
label_cat = 7
parse_mask = (parse_array == 7).astype(np.float32) + \
(parse_array == 12).astype(np.float32) + \
(parse_array == 13).astype(np.float32)
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
elif category == 'upper_body':
label_cat = 4
parse_mask = (parse_array == 4).astype(np.float32)
parser_mask_fixed += (parse_array == label_map["skirt"]).astype(np.float32) + \
(parse_array == label_map["pants"]).astype(np.float32)
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
elif category == 'lower_body':
label_cat = 6
parse_mask = (parse_array == 6).astype(np.float32) + \
(parse_array == 12).astype(np.float32) + \
(parse_array == 13).astype(np.float32)
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
(parse_array == 14).astype(np.float32) + \
(parse_array == 15).astype(np.float32)
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
parse_head = torch.from_numpy(parse_head) # [0,1]
parse_mask = torch.from_numpy(parse_mask) # [0,1]
parser_mask_fixed = torch.from_numpy(parser_mask_fixed)
parser_mask_changeable = torch.from_numpy(parser_mask_changeable)
# dilation
parse_without_cloth = np.logical_and(parse_shape, np.logical_not(parse_mask))
parse_mask = parse_mask.cpu().numpy()
width = size[0]
height = size[1]
im_arms = Image.new('L', (width, height))
arms_draw = ImageDraw.Draw(im_arms)
if category == 'dresses' or category == 'upper_body':
shoulder_right = tuple(np.multiply(pose_data[2, :2], height / 512.0))
shoulder_left = tuple(np.multiply(pose_data[5, :2], height / 512.0))
elbow_right = tuple(np.multiply(pose_data[3, :2], height / 512.0))
elbow_left = tuple(np.multiply(pose_data[6, :2], height / 512.0))
wrist_right = tuple(np.multiply(pose_data[4, :2], height / 512.0))
wrist_left = tuple(np.multiply(pose_data[7, :2], height / 512.0))
if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
if elbow_right[0] <= 1. and elbow_right[1] <= 1.:
arms_draw.line([wrist_left, elbow_left, shoulder_left, shoulder_right], 'white', 30, 'curve')
else:
arms_draw.line([wrist_left, elbow_left, shoulder_left, shoulder_right, elbow_right], 'white', 30,
'curve')
elif wrist_left[0] <= 1. and wrist_left[1] <= 1.:
if elbow_left[0] <= 1. and elbow_left[1] <= 1.:
arms_draw.line([shoulder_left, shoulder_right, elbow_right, wrist_right], 'white', 30, 'curve')
else:
arms_draw.line([elbow_left, shoulder_left, shoulder_right, elbow_right, wrist_right], 'white', 30,
'curve')
else:
arms_draw.line([wrist_left, elbow_left, shoulder_left, shoulder_right, elbow_right, wrist_right], 'white',
30, 'curve')
if height > 512:
im_arms = cv2.dilate(np.float32(im_arms), np.ones((10, 10), np.uint16), iterations=5)
elif height > 256:
im_arms = cv2.dilate(np.float32(im_arms), np.ones((5, 5), np.uint16), iterations=5)
hands = np.logical_and(np.logical_not(im_arms), arms)
parse_mask += im_arms
parser_mask_fixed += hands
# delete neck
parse_head_2 = torch.clone(parse_head)
if category == 'dresses' or category == 'upper_body':
points = []
points.append(np.multiply(pose_data[2, :2], height / 512.0))
points.append(np.multiply(pose_data[5, :2], height / 512.0))
x_coords, y_coords = zip(*points)
A = np.vstack([x_coords, np.ones(len(x_coords))]).T
m, c = lstsq(A, y_coords, rcond=None)[0]
for i in range(parse_array.shape[1]):
y = i * m + c
parse_head_2[int(y - 20 * (height / 512.0)):, i] = 0
parser_mask_fixed = np.logical_or(parser_mask_fixed, np.array(parse_head_2, dtype=np.uint16))
parse_mask += np.logical_or(parse_mask, np.logical_and(np.array(parse_head, dtype=np.uint16),
np.logical_not(np.array(parse_head_2, dtype=np.uint16))))
if height > 512:
parse_mask = cv2.dilate(parse_mask, np.ones((20, 20), np.uint16), iterations=5)
elif height > 256:
parse_mask = cv2.dilate(parse_mask, np.ones((10, 10), np.uint16), iterations=5)
else:
parse_mask = cv2.dilate(parse_mask, np.ones((5, 5), np.uint16), iterations=5)
parse_mask = np.logical_and(parser_mask_changeable, np.logical_not(parse_mask))
parse_mask_total = np.logical_or(parse_mask, parser_mask_fixed)
agnostic_mask = parse_mask_total.unsqueeze(0)
return agnostic_mask
def main():
args = parse_args()
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir)
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
project_config=accelerator_project_config,
)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
weight_dtype = torch.float16
# if accelerator.mixed_precision == "fp16":
# weight_dtype = torch.float16
# args.mixed_precision = accelerator.mixed_precision
# elif accelerator.mixed_precision == "bf16":
# weight_dtype = torch.bfloat16
# args.mixed_precision = accelerator.mixed_precision
# Load scheduler, tokenizer and models.
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
torch_dtype=torch.float16,
)
unet = UNet2DConditionModel.from_pretrained(
"yisol/IDM-VTON-DC",
subfolder="unet",
torch_dtype=torch.float16,
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="image_encoder",
torch_dtype=torch.float16,
)
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="unet_encoder",
torch_dtype=torch.float16,
)
text_encoder_one = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder",
torch_dtype=torch.float16,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder_2",
torch_dtype=torch.float16,
)
tokenizer_one = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=None,
use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_2",
revision=None,
use_fast=False,
)
# Freeze vae and text_encoder and set unet to trainable
unet.requires_grad_(False)
vae.requires_grad_(False)
image_encoder.requires_grad_(False)
UNet_Encoder.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
UNet_Encoder.to(accelerator.device, weight_dtype)
unet.eval()
UNet_Encoder.eval()
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
test_dataset = DresscodeTestDataset(
dataroot_path=args.data_dir,
phase="test",
order="unpaired" if args.unpaired else "paired",
category = args.category,
size=(args.height, args.width),
)
test_dataloader = torch.utils.data.DataLoader(
test_dataset,
shuffle=False,
batch_size=args.test_batch_size,
num_workers=4,
)
pipe = TryonPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=unet,
vae=vae,
feature_extractor= CLIPImageProcessor(),
text_encoder = text_encoder_one,
text_encoder_2 = text_encoder_two,
tokenizer = tokenizer_one,
tokenizer_2 = tokenizer_two,
scheduler = noise_scheduler,
image_encoder=image_encoder,
torch_dtype=torch.float16,
).to(accelerator.device)
pipe.unet_encoder = UNet_Encoder
# pipe.enable_sequential_cpu_offload()
# pipe.enable_model_cpu_offload()
# pipe.enable_vae_slicing()
with torch.no_grad():
# Extract the images
with torch.cuda.amp.autocast():
with torch.no_grad():
for sample in test_dataloader:
img_emb_list = []
for i in range(sample['cloth'].shape[0]):
img_emb_list.append(sample['cloth'][i])
prompt = sample["caption"]
num_prompts = sample['cloth'].shape[0]
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
image_embeds = torch.cat(img_emb_list,dim=0)
with torch.inference_mode():
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt = sample["caption_cloth"]
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
with torch.inference_mode():
(
prompt_embeds_c,
_,
_,
_,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
negative_prompt=negative_prompt,
)
generator = torch.Generator(pipe.device).manual_seed(args.seed) if args.seed is not None else None
images = pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
num_inference_steps=args.num_inference_steps,
generator=generator,
strength = 1.0,
pose_img = sample['pose_img'],
text_embeds_cloth=prompt_embeds_c,
cloth = sample["cloth_pure"].to(accelerator.device),
mask_image=sample['inpaint_mask'],
image=(sample['image']+1.0)/2.0,
height=args.height,
width=args.width,
guidance_scale=args.guidance_scale,
ip_adapter_image = image_embeds,
)[0]
for i in range(len(images)):
x_sample = pil_to_tensor(images[i])
torchvision.utils.save_image(x_sample,os.path.join(args.output_dir,sample['im_name'][i]))
if __name__ == "__main__":
main()
|