Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,552 Bytes
73c83cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import Optional
from torch import nn
from detectron2.config import CfgNode
from .cse.embedder import Embedder
from .filter import DensePoseDataFilter
def build_densepose_predictor(cfg: CfgNode, input_channels: int):
"""
Create an instance of DensePose predictor based on configuration options.
Args:
cfg (CfgNode): configuration options
input_channels (int): input tensor size along the channel dimension
Return:
An instance of DensePose predictor
"""
from .predictors import DENSEPOSE_PREDICTOR_REGISTRY
predictor_name = cfg.MODEL.ROI_DENSEPOSE_HEAD.PREDICTOR_NAME
return DENSEPOSE_PREDICTOR_REGISTRY.get(predictor_name)(cfg, input_channels)
def build_densepose_data_filter(cfg: CfgNode):
"""
Build DensePose data filter which selects data for training
Args:
cfg (CfgNode): configuration options
Return:
Callable: list(Tensor), list(Instances) -> list(Tensor), list(Instances)
An instance of DensePose filter, which takes feature tensors and proposals
as an input and returns filtered features and proposals
"""
dp_filter = DensePoseDataFilter(cfg)
return dp_filter
def build_densepose_head(cfg: CfgNode, input_channels: int):
"""
Build DensePose head based on configurations options
Args:
cfg (CfgNode): configuration options
input_channels (int): input tensor size along the channel dimension
Return:
An instance of DensePose head
"""
from .roi_heads.registry import ROI_DENSEPOSE_HEAD_REGISTRY
head_name = cfg.MODEL.ROI_DENSEPOSE_HEAD.NAME
return ROI_DENSEPOSE_HEAD_REGISTRY.get(head_name)(cfg, input_channels)
def build_densepose_losses(cfg: CfgNode):
"""
Build DensePose loss based on configurations options
Args:
cfg (CfgNode): configuration options
Return:
An instance of DensePose loss
"""
from .losses import DENSEPOSE_LOSS_REGISTRY
loss_name = cfg.MODEL.ROI_DENSEPOSE_HEAD.LOSS_NAME
return DENSEPOSE_LOSS_REGISTRY.get(loss_name)(cfg)
def build_densepose_embedder(cfg: CfgNode) -> Optional[nn.Module]:
"""
Build embedder used to embed mesh vertices into an embedding space.
Embedder contains sub-embedders, one for each mesh ID.
Args:
cfg (cfgNode): configuration options
Return:
Embedding module
"""
if cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBEDDERS:
return Embedder(cfg)
return None
|