Spaces:
Running
Running
updated code
Browse files
app.py
CHANGED
@@ -1,24 +1,36 @@
|
|
1 |
import streamlit as st
|
2 |
import wna_googlenews as wna
|
|
|
3 |
from transformers import pipeline
|
4 |
|
|
|
5 |
|
6 |
st.title("WNA Google News App")
|
7 |
-
st.subheader("Search for News")
|
8 |
-
|
9 |
-
# create a dropdown menu for selecting days range
|
10 |
-
days_range = st.selectbox("Select Days Range", ["1d", "7", "30d"])
|
11 |
|
12 |
query = st.text_input("Enter Query")
|
13 |
|
14 |
settings = {
|
15 |
"lang": "fr",
|
16 |
"region": "FR",
|
17 |
-
"period":
|
18 |
}
|
19 |
|
20 |
classifier = pipeline(task="text-classification", model="SamLowe/roberta-base-go_emotions", top_k=None)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
if st.button("Search"):
|
24 |
df = wna.get_news(settings, query)
|
@@ -27,7 +39,31 @@ if st.button("Search"):
|
|
27 |
sentences = df["title"]
|
28 |
# convert into array
|
29 |
sentences = sentences.tolist()
|
30 |
-
st.write(sentences)
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
1 |
import streamlit as st
|
2 |
import wna_googlenews as wna
|
3 |
+
import pandas as pd
|
4 |
from transformers import pipeline
|
5 |
|
6 |
+
st.set_page_config(layout="wide")
|
7 |
|
8 |
st.title("WNA Google News App")
|
9 |
+
st.subheader("Search for News and classify the headlines with sentiment analysis")
|
|
|
|
|
|
|
10 |
|
11 |
query = st.text_input("Enter Query")
|
12 |
|
13 |
settings = {
|
14 |
"lang": "fr",
|
15 |
"region": "FR",
|
16 |
+
"period": "1d"
|
17 |
}
|
18 |
|
19 |
classifier = pipeline(task="text-classification", model="SamLowe/roberta-base-go_emotions", top_k=None)
|
20 |
|
21 |
+
with st.sidebar:
|
22 |
+
st.title("Settings")
|
23 |
+
# add language and country parameters
|
24 |
+
st.header("Language and Country")
|
25 |
+
settings["lang"] = st.selectbox("Select Language", ["en", "fr"])
|
26 |
+
settings["region"] = st.selectbox("Select Country", ["US", "FR"])
|
27 |
+
|
28 |
+
# add period parameter
|
29 |
+
st.header("Period")
|
30 |
+
settings["period"] = st.selectbox("Select Period", ["1d", "7", "30d"])
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
|
35 |
if st.button("Search"):
|
36 |
df = wna.get_news(settings, query)
|
|
|
39 |
sentences = df["title"]
|
40 |
# convert into array
|
41 |
sentences = sentences.tolist()
|
42 |
+
# st.write(sentences)
|
43 |
+
# create new dataframe
|
44 |
+
df = pd.DataFrame(columns=["sentence", "best","second"])
|
45 |
+
# loop on each sentence and call classifier
|
46 |
+
for sentence in sentences:
|
47 |
+
cur_sentence = sentence
|
48 |
+
model_outputs = classifier(sentence)
|
49 |
+
cur_result = model_outputs[0]
|
50 |
+
#st.write(cur_result)
|
51 |
+
# get label 1
|
52 |
+
label = cur_result[0]['label']
|
53 |
+
score = cur_result[0]['score']
|
54 |
+
percentage = round(score * 100, 2)
|
55 |
+
str1 = label + " " + str(percentage)
|
56 |
+
# get label 2
|
57 |
+
label = cur_result[1]['label']
|
58 |
+
score = cur_result[1]['score']
|
59 |
+
percentage = round(score * 100, 2)
|
60 |
+
str2 = label + " " + str(percentage)
|
61 |
+
# insert cur_sentence and cur_result into dataframe
|
62 |
+
df.loc[len(df.index)] = [cur_sentence, str1, str2]
|
63 |
+
|
64 |
+
# write info on the output
|
65 |
+
st.write("Number of sentences:", len(df))
|
66 |
+
st.write("Language:", settings["lang"], "Country:", settings["region"])
|
67 |
+
|
68 |
+
st.dataframe(df)
|
69 |
|