# %% import gradio.components as gc import gradio as gr import numpy as np import pandas as pd import torch from PIL import Image from transformers import CLIPModel, CLIPProcessor device = 'cpu' torch.no_grad().__enter__() torch.autocast('cuda').__enter__() # %% t = pd.read_pickle("clip_texts_1_fp16.pkl") words = t.reset_index().word wordsv = torch.tensor(t.values).to(device) # %% # %% model_name = "openai/clip-vit-large-patch14" mmm = CLIPModel.from_pretrained(model_name) mmm.eval() mmm.to(device) processor = CLIPProcessor.from_pretrained(model_name) # %% def slerp(t, v0, v1, DOT_THRESHOLD=0.9995): """ helper function to spherically interpolate two arrays v1 v2 """ inputs_are_torch = False if not isinstance(v0, np.ndarray): inputs_are_torch = True input_device = v0.device v0 = v0.cpu().numpy() v1 = v1.cpu().numpy() dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1))) if np.abs(dot) > DOT_THRESHOLD: v2 = (1 - t) * v0 + t * v1 else: theta_0 = np.arccos(dot) sin_theta_0 = np.sin(theta_0) theta_t = theta_0 * t sin_theta_t = np.sin(theta_t) s0 = np.sin(theta_0 - theta_t) / sin_theta_0 s1 = sin_theta_t / sin_theta_0 v2 = s0 * v0 + s1 * v1 if inputs_are_torch: v2 = torch.from_numpy(v2).to(input_device) return v2 def query(text: str, img: Image.Image, limit: int, score_threshold: float, slerp_degree: float): if text != '': inp = processor(text=text, return_tensors='pt').to(device) rout = mmm.get_text_features(**inp) tout = rout.detach().cpu().numpy()[0] out = tout if img is not None: inp = processor(images=[img], return_tensors="pt",).to(device) rout = mmm.get_image_features(**inp) iout = rout.detach().cpu().numpy()[0] out = iout if text != '' and img is not None: out = slerp(slerp_degree, tout, iout) if out is not None: # calculate cosine similarity scores = np.dot(out, wordsv.T) # sort by score topk = ( pd.concat( [words, pd.Series(scores, name='score')], axis=1 ) .sort_values('score', ascending=False) .query(f'score > {score_threshold}') .head(limit) ) topwords = "\n".join( f'{word}: {score:.2f} ' for _, word, score in topk.itertuples() ) return topwords searchtext = gc.Textbox(lines=2, placeholder="Search text") searchimage = gc.Image(shape=(224, 224), label="Search image", type='pil') inp_limit = gc.Slider(1, 50, 10, step=1, label='Limit') score_threshold = gc.Slider(0, 30, 0, step=.5, label='Score threshold') slerp_degree = gc.Slider( 0, 1, 0.5, step=.01, label='Slerp degree (if both text and image are provided)\nFinds a midpoint between image and text embeddings') dsurl = 'https://www.kaggle.com/datasets/yk1598/479k-english-words' gr.Interface( query, [searchtext, searchimage, inp_limit, score_threshold, slerp_degree], [gc.Textbox(label='Top words')], title="Initial Token Finder for Textual Inversion", description=f"find the closest single token word for a given text and/or image.\nbased on {model_name}.\n\nData: {dsurl}", analytics_enabled=False, allow_flagging='never', ).launch()