File size: 9,415 Bytes
e47c7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19cb368
 
e47c7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19cb368
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e47c7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19cb368
e47c7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import torch.distributions as dist
from typing import List, Dict
import itertools

start_token = "<|startoftext|>"
end_token = "<|endoftext|>"


def _get_outside_indices(subtree_indices, attn_map_idx_to_wp):
    flattened_subtree_indices = _flatten_indices(subtree_indices)
    outside_indices = [
        map_idx
        for map_idx in attn_map_idx_to_wp.keys() if (map_idx not in flattened_subtree_indices)
    ]
    return outside_indices


def _flatten_indices(related_indices):
    flattened_related_indices = []
    for item in related_indices:
        if isinstance(item, list):
            flattened_related_indices.extend(item)
        else:
            flattened_related_indices.append(item)
    return flattened_related_indices


def split_indices(related_indices: List[int]):
    noun = [related_indices[-1]]  # assumes noun is always last in the list
    modifier = related_indices[:-1]
    if isinstance(modifier, int):
        modifier = [modifier]
    return noun, modifier


def _symmetric_kl(attention_map1, attention_map2):
    # Convert map into a single distribution: 16x16 -> 256
    if len(attention_map1.shape) > 1:
        attention_map1 = attention_map1.reshape(-1)
    if len(attention_map2.shape) > 1:
        attention_map2 = attention_map2.reshape(-1)

    p = dist.Categorical(probs=attention_map1)
    q = dist.Categorical(probs=attention_map2)

    kl_divergence_pq = dist.kl_divergence(p, q)
    kl_divergence_qp = dist.kl_divergence(q, p)

    avg_kl_divergence = (kl_divergence_pq + kl_divergence_qp) / 2
    return avg_kl_divergence


def calculate_positive_loss(attention_maps, modifier, noun):
    src_indices = modifier
    dest_indices = noun

    if isinstance(src_indices, list) and isinstance(dest_indices, list):
        wp_pos_loss = [
            _symmetric_kl(attention_maps[s], attention_maps[d])
            for (s, d) in itertools.product(src_indices, dest_indices)
        ]
        positive_loss = max(wp_pos_loss)
    elif isinstance(dest_indices, list):
        wp_pos_loss = [
            _symmetric_kl(attention_maps[src_indices], attention_maps[d])
            for d in dest_indices
        ]
        positive_loss = max(wp_pos_loss)
    elif isinstance(src_indices, list):
        wp_pos_loss = [
            _symmetric_kl(attention_maps[s], attention_maps[dest_indices])
            for s in src_indices
        ]
        positive_loss = max(wp_pos_loss)
    else:
        positive_loss = _symmetric_kl(
            attention_maps[src_indices], attention_maps[dest_indices]
        )

    return positive_loss


def _calculate_outside_loss(attention_maps, src_indices, outside_loss):
    negative_loss = []
    computed_pairs = set()
    pair_counter = 0

    for outside_idx in outside_loss:
        if isinstance(src_indices, list):
            wp_neg_loss = []
            for t in src_indices:
                pair_key = (t, outside_idx)
                if pair_key not in computed_pairs:
                    wp_neg_loss.append(
                        _symmetric_kl(
                            attention_maps[t], attention_maps[outside_idx]
                        )
                    )
                    computed_pairs.add(pair_key)
            negative_loss.append(max(wp_neg_loss) if wp_neg_loss else 0)
            pair_counter += 1

        else:
            pair_key = (src_indices, outside_idx)
            if pair_key not in computed_pairs:
                negative_loss.append(
                    _symmetric_kl(
                        attention_maps[src_indices], attention_maps[outside_idx]
                    )
                )
                computed_pairs.add(pair_key)
                pair_counter += 1

    return negative_loss, pair_counter


def align_wordpieces_indices(
        wordpieces2indices, start_idx, target_word
):
    """
    Aligns a `target_word` that contains more than one wordpiece (the first wordpiece is `start_idx`)
    """

    wp_indices = [start_idx]
    wp = wordpieces2indices[start_idx].replace("</w>", "")

    # Run over the next wordpieces in the sequence (which is why we use +1)
    for wp_idx in range(start_idx + 1, len(wordpieces2indices)):
        if wp == target_word:
            break

        wp2 = wordpieces2indices[wp_idx].replace("</w>", "")
        if target_word.startswith(wp + wp2) and wp2 != target_word:
            wp += wordpieces2indices[wp_idx].replace("</w>", "")
            wp_indices.append(wp_idx)
        else:
            wp_indices = (
                []
            )  # if there's no match, you want to clear the list and finish
            break

    return wp_indices


def extract_attribution_indices(doc):
    # doc = parser(prompt)
    subtrees = []
    modifiers = ["amod", "nmod", "compound", "npadvmod", "advmod", "acomp"]

    for w in doc:
        if w.pos_ not in ["NOUN", "PROPN"] or w.dep_ in modifiers:
            continue
        subtree = []
        stack = []
        for child in w.children:
            if child.dep_ in modifiers:
                subtree.append(child)
                stack.extend(child.children)

        while stack:
            node = stack.pop()
            if node.dep_ in modifiers or node.dep_ == "conj":
                subtree.append(node)
                stack.extend(node.children)
        if subtree:
            subtree.append(w)
            subtrees.append(subtree)
    return subtrees

def extract_attribution_indices_with_verbs(doc):
    '''This function specifically addresses cases where a verb is between
       a noun and its modifier. For instance: "a dog that is red"
       here, the aux is between 'dog' and 'red'. '''

    subtrees = []
    modifiers = ["amod", "nmod", "compound", "npadvmod", "advmod", "acomp",
                 'relcl']
    for w in doc:
        if w.pos_ not in ["NOUN", "PROPN"] or w.dep_ in modifiers:
            continue
        subtree = []
        stack = []
        for child in w.children:
            if child.dep_ in modifiers:
                if child.pos_ not in ['AUX', 'VERB']:
                    subtree.append(child)
                stack.extend(child.children)

        while stack:
            node = stack.pop()
            if node.dep_ in modifiers or node.dep_ == "conj":
                # we don't want to add 'is' or other verbs to the loss, we want their children
                if node.pos_ not in ['AUX', 'VERB']:
                    subtree.append(node)
                stack.extend(node.children)
        if subtree:
            subtree.append(w)
            subtrees.append(subtree)
        return subtrees

def extract_attribution_indices_with_verb_root(doc):
    '''This function specifically addresses cases where a verb is between
       a noun and its modifier. For instance: "a dog that is red"
       here, the aux is between 'dog' and 'red'. '''

    subtrees = []
    modifiers = ["amod", "nmod", "compound", "npadvmod", "advmod", "acomp"]
    for w in doc:
        subtree = []
        stack = []

        # if w is a verb/aux and has a noun child and a modifier child, add them to the stack
        if w.pos_ != 'AUX' or w.dep_ in modifiers:
            continue

        for child in w.children:
            if child.dep_ in modifiers or child.pos_ in ['NOUN', 'PROPN']:
                if child.pos_ not in ['AUX', 'VERB']:
                    subtree.append(child)
                stack.extend(child.children)
        # did not find a pair of noun and modifier
        if len(subtree) < 2:
            continue

        while stack:
            node = stack.pop()
            if node.dep_ in modifiers or node.dep_ == "conj":
                # we don't want to add 'is' or other verbs to the loss, we want their children
                if node.pos_ not in ['AUX']:
                    subtree.append(node)
                stack.extend(node.children)

        if subtree:
            if w.pos_ not in ['AUX']:
                subtree.append(w)
            subtrees.append(subtree)
    return subtrees

def calculate_negative_loss(
        attention_maps, modifier, noun, subtree_indices, attn_map_idx_to_wp
):
    outside_indices = _get_outside_indices(subtree_indices, attn_map_idx_to_wp)
    negative_modifier_loss, num_modifier_pairs = _calculate_outside_loss(
        attention_maps, modifier, outside_indices
    )
    negative_noun_loss, num_noun_pairs = _calculate_outside_loss(
        attention_maps, noun, outside_indices
    )

    negative_modifier_loss = -sum(negative_modifier_loss) / len(outside_indices)
    negative_noun_loss = -sum(negative_noun_loss) / len(outside_indices)

    negative_loss = (negative_modifier_loss + negative_noun_loss) / 2

    return negative_loss

def get_indices(tokenizer, prompt: str) -> Dict[str, int]:
    """Utility function to list the indices of the tokens you wish to alter"""
    ids = tokenizer(prompt).input_ids
    indices = {
        i: tok
        for tok, i in zip(
            tokenizer.convert_ids_to_tokens(ids), range(len(ids))
        )
    }
    return indices

def get_attention_map_index_to_wordpiece(tokenizer, prompt):
    attn_map_idx_to_wp = {}

    wordpieces2indices = get_indices(tokenizer, prompt)

    # Ignore `start_token` and `end_token`
    for i in list(wordpieces2indices.keys())[1:-1]:
        wordpiece = wordpieces2indices[i]
        wordpiece = wordpiece.replace("</w>", "")
        attn_map_idx_to_wp[i] = wordpiece

    return attn_map_idx_to_wp