Spaces:
Sleeping
Sleeping
File size: 9,415 Bytes
e47c7c5 19cb368 e47c7c5 19cb368 e47c7c5 19cb368 e47c7c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import torch.distributions as dist
from typing import List, Dict
import itertools
start_token = "<|startoftext|>"
end_token = "<|endoftext|>"
def _get_outside_indices(subtree_indices, attn_map_idx_to_wp):
flattened_subtree_indices = _flatten_indices(subtree_indices)
outside_indices = [
map_idx
for map_idx in attn_map_idx_to_wp.keys() if (map_idx not in flattened_subtree_indices)
]
return outside_indices
def _flatten_indices(related_indices):
flattened_related_indices = []
for item in related_indices:
if isinstance(item, list):
flattened_related_indices.extend(item)
else:
flattened_related_indices.append(item)
return flattened_related_indices
def split_indices(related_indices: List[int]):
noun = [related_indices[-1]] # assumes noun is always last in the list
modifier = related_indices[:-1]
if isinstance(modifier, int):
modifier = [modifier]
return noun, modifier
def _symmetric_kl(attention_map1, attention_map2):
# Convert map into a single distribution: 16x16 -> 256
if len(attention_map1.shape) > 1:
attention_map1 = attention_map1.reshape(-1)
if len(attention_map2.shape) > 1:
attention_map2 = attention_map2.reshape(-1)
p = dist.Categorical(probs=attention_map1)
q = dist.Categorical(probs=attention_map2)
kl_divergence_pq = dist.kl_divergence(p, q)
kl_divergence_qp = dist.kl_divergence(q, p)
avg_kl_divergence = (kl_divergence_pq + kl_divergence_qp) / 2
return avg_kl_divergence
def calculate_positive_loss(attention_maps, modifier, noun):
src_indices = modifier
dest_indices = noun
if isinstance(src_indices, list) and isinstance(dest_indices, list):
wp_pos_loss = [
_symmetric_kl(attention_maps[s], attention_maps[d])
for (s, d) in itertools.product(src_indices, dest_indices)
]
positive_loss = max(wp_pos_loss)
elif isinstance(dest_indices, list):
wp_pos_loss = [
_symmetric_kl(attention_maps[src_indices], attention_maps[d])
for d in dest_indices
]
positive_loss = max(wp_pos_loss)
elif isinstance(src_indices, list):
wp_pos_loss = [
_symmetric_kl(attention_maps[s], attention_maps[dest_indices])
for s in src_indices
]
positive_loss = max(wp_pos_loss)
else:
positive_loss = _symmetric_kl(
attention_maps[src_indices], attention_maps[dest_indices]
)
return positive_loss
def _calculate_outside_loss(attention_maps, src_indices, outside_loss):
negative_loss = []
computed_pairs = set()
pair_counter = 0
for outside_idx in outside_loss:
if isinstance(src_indices, list):
wp_neg_loss = []
for t in src_indices:
pair_key = (t, outside_idx)
if pair_key not in computed_pairs:
wp_neg_loss.append(
_symmetric_kl(
attention_maps[t], attention_maps[outside_idx]
)
)
computed_pairs.add(pair_key)
negative_loss.append(max(wp_neg_loss) if wp_neg_loss else 0)
pair_counter += 1
else:
pair_key = (src_indices, outside_idx)
if pair_key not in computed_pairs:
negative_loss.append(
_symmetric_kl(
attention_maps[src_indices], attention_maps[outside_idx]
)
)
computed_pairs.add(pair_key)
pair_counter += 1
return negative_loss, pair_counter
def align_wordpieces_indices(
wordpieces2indices, start_idx, target_word
):
"""
Aligns a `target_word` that contains more than one wordpiece (the first wordpiece is `start_idx`)
"""
wp_indices = [start_idx]
wp = wordpieces2indices[start_idx].replace("</w>", "")
# Run over the next wordpieces in the sequence (which is why we use +1)
for wp_idx in range(start_idx + 1, len(wordpieces2indices)):
if wp == target_word:
break
wp2 = wordpieces2indices[wp_idx].replace("</w>", "")
if target_word.startswith(wp + wp2) and wp2 != target_word:
wp += wordpieces2indices[wp_idx].replace("</w>", "")
wp_indices.append(wp_idx)
else:
wp_indices = (
[]
) # if there's no match, you want to clear the list and finish
break
return wp_indices
def extract_attribution_indices(doc):
# doc = parser(prompt)
subtrees = []
modifiers = ["amod", "nmod", "compound", "npadvmod", "advmod", "acomp"]
for w in doc:
if w.pos_ not in ["NOUN", "PROPN"] or w.dep_ in modifiers:
continue
subtree = []
stack = []
for child in w.children:
if child.dep_ in modifiers:
subtree.append(child)
stack.extend(child.children)
while stack:
node = stack.pop()
if node.dep_ in modifiers or node.dep_ == "conj":
subtree.append(node)
stack.extend(node.children)
if subtree:
subtree.append(w)
subtrees.append(subtree)
return subtrees
def extract_attribution_indices_with_verbs(doc):
'''This function specifically addresses cases where a verb is between
a noun and its modifier. For instance: "a dog that is red"
here, the aux is between 'dog' and 'red'. '''
subtrees = []
modifiers = ["amod", "nmod", "compound", "npadvmod", "advmod", "acomp",
'relcl']
for w in doc:
if w.pos_ not in ["NOUN", "PROPN"] or w.dep_ in modifiers:
continue
subtree = []
stack = []
for child in w.children:
if child.dep_ in modifiers:
if child.pos_ not in ['AUX', 'VERB']:
subtree.append(child)
stack.extend(child.children)
while stack:
node = stack.pop()
if node.dep_ in modifiers or node.dep_ == "conj":
# we don't want to add 'is' or other verbs to the loss, we want their children
if node.pos_ not in ['AUX', 'VERB']:
subtree.append(node)
stack.extend(node.children)
if subtree:
subtree.append(w)
subtrees.append(subtree)
return subtrees
def extract_attribution_indices_with_verb_root(doc):
'''This function specifically addresses cases where a verb is between
a noun and its modifier. For instance: "a dog that is red"
here, the aux is between 'dog' and 'red'. '''
subtrees = []
modifiers = ["amod", "nmod", "compound", "npadvmod", "advmod", "acomp"]
for w in doc:
subtree = []
stack = []
# if w is a verb/aux and has a noun child and a modifier child, add them to the stack
if w.pos_ != 'AUX' or w.dep_ in modifiers:
continue
for child in w.children:
if child.dep_ in modifiers or child.pos_ in ['NOUN', 'PROPN']:
if child.pos_ not in ['AUX', 'VERB']:
subtree.append(child)
stack.extend(child.children)
# did not find a pair of noun and modifier
if len(subtree) < 2:
continue
while stack:
node = stack.pop()
if node.dep_ in modifiers or node.dep_ == "conj":
# we don't want to add 'is' or other verbs to the loss, we want their children
if node.pos_ not in ['AUX']:
subtree.append(node)
stack.extend(node.children)
if subtree:
if w.pos_ not in ['AUX']:
subtree.append(w)
subtrees.append(subtree)
return subtrees
def calculate_negative_loss(
attention_maps, modifier, noun, subtree_indices, attn_map_idx_to_wp
):
outside_indices = _get_outside_indices(subtree_indices, attn_map_idx_to_wp)
negative_modifier_loss, num_modifier_pairs = _calculate_outside_loss(
attention_maps, modifier, outside_indices
)
negative_noun_loss, num_noun_pairs = _calculate_outside_loss(
attention_maps, noun, outside_indices
)
negative_modifier_loss = -sum(negative_modifier_loss) / len(outside_indices)
negative_noun_loss = -sum(negative_noun_loss) / len(outside_indices)
negative_loss = (negative_modifier_loss + negative_noun_loss) / 2
return negative_loss
def get_indices(tokenizer, prompt: str) -> Dict[str, int]:
"""Utility function to list the indices of the tokens you wish to alter"""
ids = tokenizer(prompt).input_ids
indices = {
i: tok
for tok, i in zip(
tokenizer.convert_ids_to_tokens(ids), range(len(ids))
)
}
return indices
def get_attention_map_index_to_wordpiece(tokenizer, prompt):
attn_map_idx_to_wp = {}
wordpieces2indices = get_indices(tokenizer, prompt)
# Ignore `start_token` and `end_token`
for i in list(wordpieces2indices.keys())[1:-1]:
wordpiece = wordpieces2indices[i]
wordpiece = wordpiece.replace("</w>", "")
attn_map_idx_to_wp[i] = wordpiece
return attn_map_idx_to_wp |