Slower-whisper / src /conversion /hf_converter.py
aadnk's picture
Fix convert_hf_whisper
9939d13
raw
history blame
2.28 kB
# https://github.com/bayartsogt-ya/whisper-multiple-hf-datasets
from copy import deepcopy
import torch
WHISPER_MAPPING = {
"layers": "blocks",
"fc1": "mlp.0",
"fc2": "mlp.2",
"final_layer_norm": "mlp_ln",
"layers": "blocks",
".self_attn.q_proj": ".attn.query",
".self_attn.k_proj": ".attn.key",
".self_attn.v_proj": ".attn.value",
".self_attn_layer_norm": ".attn_ln",
".self_attn.out_proj": ".attn.out",
".encoder_attn.q_proj": ".cross_attn.query",
".encoder_attn.k_proj": ".cross_attn.key",
".encoder_attn.v_proj": ".cross_attn.value",
".encoder_attn_layer_norm": ".cross_attn_ln",
".encoder_attn.out_proj": ".cross_attn.out",
"decoder.layer_norm.": "decoder.ln.",
"encoder.layer_norm.": "encoder.ln_post.",
"embed_tokens": "token_embedding",
"encoder.embed_positions.weight": "encoder.positional_embedding",
"decoder.embed_positions.weight": "decoder.positional_embedding",
"layer_norm": "ln_post",
}
def rename_keys(s_dict):
keys = list(s_dict.keys())
for key in keys:
new_key = key
for k, v in WHISPER_MAPPING.items():
if k in key:
new_key = new_key.replace(k, v)
print(f"{key} -> {new_key}")
s_dict[new_key] = s_dict.pop(key)
return s_dict
def convert_hf_whisper(hf_model_name_or_path: str, whisper_state_path: str):
from transformers import WhisperForConditionalGeneration
transformer_model = WhisperForConditionalGeneration.from_pretrained(hf_model_name_or_path)
config = transformer_model.config
# first build dims
dims = {
'n_mels': config.num_mel_bins,
'n_vocab': config.vocab_size,
'n_audio_ctx': config.max_source_positions,
'n_audio_state': config.d_model,
'n_audio_head': config.encoder_attention_heads,
'n_audio_layer': config.encoder_layers,
'n_text_ctx': config.max_target_positions,
'n_text_state': config.d_model,
'n_text_head': config.decoder_attention_heads,
'n_text_layer': config.decoder_layers
}
state_dict = deepcopy(transformer_model.model.state_dict())
state_dict = rename_keys(state_dict)
torch.save({"dims": dims, "model_state_dict": state_dict}, whisper_state_path)