Spaces:
Running
Running
File size: 2,769 Bytes
97e4faf bd104fa 97e4faf 20d4ba4 97e4faf d743ee9 97e4faf ea84da0 bd104fa 97e4faf ea84da0 d743ee9 ea84da0 d743ee9 ea84da0 d743ee9 ea84da0 d743ee9 ea84da0 97e4faf 44f4964 97e4faf 44f4964 97e4faf 44f4964 97e4faf 2403326 e9c4729 bd104fa 97e4faf d743ee9 ea84da0 d743ee9 1d9f047 97e4faf d743ee9 97e4faf bd104fa 944b0be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import os
import torch
import gradio as gr
import torchaudio
import time
from datetime import datetime
from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_voice, load_voices
VOICE_OPTIONS = [
"angie",
"applejack",
"atkins",
"barack_obama",
"daniel",
"daws",
"deniro",
"dortice",
"dreams",
"emma",
"empire",
"freeman",
"geralt",
"grace",
"halle",
"jane_eyre",
"jlaw",
"kennard",
"lescault",
"lj",
"mol",
"mouse",
"myself",
"pat",
"pat2",
"rainbow",
"sanjita",
"snakes",
"tim_reynolds",
"tom",
"weaver",
"william",
"random",
]
def inference(
text,
voice,
Emotion,
Preset,
):
texts = [text]
Angry_tone = "[I am so angry]"
Sad_tone = "[I am so sad]"
Happy_tone = "[I am so happy]"
Scared_tone = "[I am so scared]"
if Emotion == "Angry":
text = Angry_tone + text
if Emotion == "Sad":
text = Sad_tone + text
if Emotion == "Happy":
text = Happy_tone + text
if Emotion == "Scared":
text = Scared_tone + text
voices = [voice]
if len(voices) == 1:
voice_samples, conditioning_latents = load_voice(voice)
else:
voice_samples, conditioning_latents = load_voices(voices)
audio_frames = []
for j, text in enumerate(texts):
for audio_frame in tts.tts_with_preset(
text,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
preset=Preset,
k=1
):
audio_frames.append(torch.from_numpy(audio_frame.cpu().detach().numpy()))
complete_audio = torch.cat(audio_frames, dim=0)
yield (24000, complete_audio.numpy())
def main():
title = "TTS "
text = gr.Textbox(
lines=4,
label="Text:",
)
voice = gr.Dropdown(
VOICE_OPTIONS, value="jane_eyre", label="Select voice:", type="value"
)
Emotion = gr.Radio(
["Angry", "Sad", "Happy", "Scared"],
type="value",
)
Preset = gr.Radio(
["ultra_fast", "fast", "standard", "high_quality"],
type="value",
value="ultra_fast",
)
output_audio = gr.Audio(label="streaming audio:", streaming=True, autoplay=True)
interface = gr.Interface(
fn=inference,
inputs=[
text,
voice,
Emotion,
Preset,
],
title=title,
outputs=[output_audio],
)
interface.queue().launch()
if __name__ == "__main__":
tts = TextToSpeech(kv_cache=True, use_deepspeed=True, half=True)
with open("Tortoise_TTS_Runs_Scripts.log", "a") as f:
f.write(
f"\n\n-------------------------Tortoise TTS Scripts Logs, {datetime.now()}-------------------------\n"
)
main()
|