#!/usr/bin/env python from __future__ import annotations import os import random import tempfile import gradio as gr import imageio import numpy as np import torch from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler DESCRIPTION = '# zeroscope v2' if not torch.cuda.is_available(): DESCRIPTION += '\n
Running on CPU 🥶 This demo does not work on CPU.
' if (SPACE_ID := os.getenv('SPACE_ID')) is not None: DESCRIPTION += f'\nFor faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
' MAX_NUM_FRAMES = int(os.getenv('MAX_NUM_FRAMES', '200')) DEFAULT_NUM_FRAMES = min(MAX_NUM_FRAMES, int(os.getenv('DEFAULT_NUM_FRAMES', '24'))) MAX_SEED = np.iinfo(np.int32).max pipe = DiffusionPipeline.from_pretrained('cerspense/zeroscope_v2_576w', torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.enable_vae_slicing() def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def to_video(frames: list[np.ndarray], fps: int) -> str: out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) writer = imageio.get_writer(out_file.name, format='FFMPEG', fps=fps) for frame in frames: writer.append_data(frame) writer.close() return out_file.name def generate(prompt: str, seed: int, num_frames: int, num_inference_steps: int) -> str: generator = torch.Generator().manual_seed(seed) frames = pipe(prompt, num_inference_steps=num_inference_steps, num_frames=num_frames, width=576, height=320, generator=generator).frames return to_video(frames, 8) examples = [ ['An astronaut riding a horse', 0, 24, 25], ['A panda eating bamboo on a rock', 0, 24, 25], ['Spiderman is surfing', 0, 24, 25], ] with gr.Blocks(css='style.css') as demo: gr.Markdown(DESCRIPTION) with gr.Box(): with gr.Row(): prompt = gr.Text(label='Prompt', show_label=False, max_lines=1, placeholder='Enter your prompt', container=False) run_button = gr.Button('Generate video', scale=0) result = gr.Video(label='Result', show_label=False) with gr.Accordion('Advanced options', open=False): seed = gr.Slider(label='Seed', minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label='Randomize seed', value=True) num_frames = gr.Slider( label='Number of frames', minimum=24, maximum=MAX_NUM_FRAMES, step=1, value=24, info= 'Note that the content of the video also changes when you change the number of frames.' ) num_inference_steps = gr.Slider(label='Number of inference steps', minimum=10, maximum=50, step=1, value=25) inputs = [ prompt, seed, num_frames, num_inference_steps, ] gr.Examples(examples=examples, inputs=inputs, outputs=result, fn=generate, cache_examples=os.getenv('CACHE_EXAMPLES') == '1') prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, ).then( fn=generate, inputs=inputs, outputs=result, api_name='run', ) run_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, ).then( fn=generate, inputs=inputs, outputs=result, ) demo.queue(max_size=10).launch()