import random | |
from typing import Dict, cast | |
import torch | |
import transformers | |
from datasets import DatasetDict, load_dataset | |
from dotenv import load_dotenv | |
from query import print_answers | |
from src.evaluation import evaluate | |
from src.readers.dpr_reader import DprReader | |
from src.retrievers.base_retriever import Retriever | |
from src.retrievers.es_retriever import ESRetriever | |
from src.retrievers.faiss_retriever import FaissRetriever | |
from src.utils.log import get_logger | |
from src.utils.preprocessing import context_to_reader_input | |
from src.utils.timing import get_times, timeit | |
logger = get_logger() | |
load_dotenv() | |
transformers.logging.set_verbosity_error() | |
if __name__ == '__main__': | |
dataset_name = "GroNLP/ik-nlp-22_slp" | |
paragraphs = cast(DatasetDict, load_dataset( | |
"GroNLP/ik-nlp-22_slp", "paragraphs")) | |
questions = cast(DatasetDict, load_dataset(dataset_name, "questions")) | |
# Only doing a few questions for speed | |
subset_idx = 3 | |
questions_test = questions["test"][:subset_idx] | |
experiments: Dict[str, Retriever] = { | |
"faiss": FaissRetriever(paragraphs), | |
# "es": ESRetriever(paragraphs), | |
} | |
for experiment_name, retriever in experiments.items(): | |
reader = DprReader() | |
for idx in range(subset_idx): | |
question = questions_test["question"][idx] | |
answer = questions_test["answer"][idx] | |
scores, context = retriever.retrieve(question, 5) | |
reader_input = context_to_reader_input(context) | |
# workaround so we can use the decorator with a dynamic name for time recording | |
time_wrapper = timeit(f"{experiment_name}.read") | |
answers = time_wrapper(reader.read)(question, reader_input, 5) | |
# Calculate softmaxed scores for readable output | |
sm = torch.nn.Softmax(dim=0) | |
document_scores = sm(torch.Tensor( | |
[pred.relevance_score for pred in answers])) | |
span_scores = sm(torch.Tensor( | |
[pred.span_score for pred in answers])) | |
print_answers(answers, scores, context) | |
# TODO evaluation and storing of results | |
times = get_times() | |
print(times) | |
# TODO evaluation and storing of results | |
# # Initialize retriever | |
# retriever = FaissRetriever(paragraphs) | |
# # retriever = ESRetriever(paragraphs) | |
# # Retrieve example | |
# # random.seed(111) | |
# random_index = random.randint(0, len(questions_test["question"])-1) | |
# example_q = questions_test["question"][random_index] | |
# example_a = questions_test["answer"][random_index] | |
# scores, result = retriever.retrieve(example_q) | |
# reader_input = context_to_reader_input(result) | |
# # TODO: use new code from query.py to clean this up | |
# # Initialize reader | |
# answers = reader.read(example_q, reader_input) | |
# # Calculate softmaxed scores for readable output | |
# sm = torch.nn.Softmax(dim=0) | |
# document_scores = sm(torch.Tensor( | |
# [pred.relevance_score for pred in answers])) | |
# span_scores = sm(torch.Tensor( | |
# [pred.span_score for pred in answers])) | |
# print(example_q) | |
# for answer_i, answer in enumerate(answers): | |
# print(f"[{answer_i + 1}]: {answer.text}") | |
# print(f"\tDocument {answer.doc_id}", end='') | |
# print(f"\t(score {document_scores[answer_i] * 100:.02f})") | |
# print(f"\tSpan {answer.start_index}-{answer.end_index}", end='') | |
# print(f"\t(score {span_scores[answer_i] * 100:.02f})") | |
# print() # Newline | |
# # print(f"Example q: {example_q} answer: {result['text'][0]}") | |
# # for i, score in enumerate(scores): | |
# # print(f"Result {i+1} (score: {score:.02f}):") | |
# # print(result['text'][i]) | |
# # Determine best answer we want to evaluate | |
# highest, highest_index = 0, 0 | |
# for i, value in enumerate(span_scores): | |
# if value + document_scores[i] > highest: | |
# highest = value + document_scores[i] | |
# highest_index = i | |
# # Retrieve exact match and F1-score | |
# exact_match, f1_score = evaluate( | |
# example_a, answers[highest_index].text) | |
# print(f"Gold answer: {example_a}\n" | |
# f"Predicted answer: {answers[highest_index].text}\n" | |
# f"Exact match: {exact_match:.02f}\n" | |
# f"F1-score: {f1_score:.02f}") | |
# Calculate overall performance | |
# total_f1 = 0 | |
# total_exact = 0 | |
# total_len = len(questions_test["question"]) | |
# start_time = time.time() | |
# for i, question in enumerate(questions_test["question"]): | |
# print(question) | |
# answer = questions_test["answer"][i] | |
# print(answer) | |
# | |
# scores, result = retriever.retrieve(question) | |
# reader_input = result_to_reader_input(result) | |
# answers = reader.read(question, reader_input) | |
# | |
# document_scores = sm(torch.Tensor( | |
# [pred.relevance_score for pred in answers])) | |
# span_scores = sm(torch.Tensor( | |
# [pred.span_score for pred in answers])) | |
# | |
# highest, highest_index = 0, 0 | |
# for j, value in enumerate(span_scores): | |
# if value + document_scores[j] > highest: | |
# highest = value + document_scores[j] | |
# highest_index = j | |
# print(answers[highest_index]) | |
# exact_match, f1_score = evaluate(answer, answers[highest_index].text) | |
# total_f1 += f1_score | |
# total_exact += exact_match | |
# print(f"Total time:", round(time.time() - start_time, 2), "seconds.") | |
# print(total_f1) | |
# print(total_exact) | |
# print(total_f1/total_len) | |