GGroenendaal commited on
Commit
790404c
·
1 Parent(s): cb70096

remove old readme and cleanup old readme

Browse files
Files changed (2) hide show
  1. README.md +7 -1
  2. README.old.md +0 -93
README.md CHANGED
@@ -17,6 +17,8 @@ pinned: true
17
 
18
  View the demo at huggingface spaces:
19
 
 
 
20
 
21
  ## Dependencies
22
 
@@ -46,6 +48,11 @@ Next, run the following command **from the root of the repository**:
46
  docker cp es01:/usr/share/elasticsearch/config/certs/http_ca.crt .
47
  ```
48
 
 
 
 
 
 
49
  ## Running
50
 
51
  To make sure we're using the dependencies managed by Poetry, run `poetry shell`
@@ -101,5 +108,4 @@ options:
101
  ```
102
 
103
 
104
-
105
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
 
17
 
18
  View the demo at huggingface spaces:
19
 
20
+ [DEMO](https://huggingface.co/spaces/RugNlpFlashcards/Speech_Language_Processing_Jurafsky_Martin)
21
+
22
 
23
  ## Dependencies
24
 
 
48
  docker cp es01:/usr/share/elasticsearch/config/certs/http_ca.crt .
49
  ```
50
 
51
+
52
+ Alternatively, if docker is not available or feasable. It is possible to use a trail hosted version of Elasticsearch at:
53
+
54
+ https://www.elastic.co/cloud/
55
+
56
  ## Running
57
 
58
  To make sure we're using the dependencies managed by Poetry, run `poetry shell`
 
108
  ```
109
 
110
 
 
111
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
README.old.md DELETED
@@ -1,93 +0,0 @@
1
- # nlp-flashcard-project
2
-
3
- ## Todo 2
4
-
5
- - [ ] Contexts preprocessing
6
- - [ ] Formules enzo eruit filteren
7
- - [ ] Splitsen op zinnen...?
8
- - [ ] Meer language models proberen
9
- - [X] Elasticsearch
10
- - [X] CLI voor vragen beantwoorden
11
-
12
- ### Extra dingen
13
-
14
- - [X] Huggingface spaces demo
15
- - [ ] Question generation voor finetuning
16
- - [ ] Language model finetunen
17
-
18
- ## Todo voor progress meeting
19
-
20
- - [ ] Data inlezen/Repo klaarmaken
21
- - [ ] Proof of concept met UnifiedQA
22
- - [ ] Standaard QA model met de dataset
23
- - [ ] Papers verzamelen/lezen
24
- - [ ] Eerder werk bekijken, inspiratie opdoen voor research richting
25
-
26
- ## Overview
27
-
28
- De meeste QA systemen bestaan uit twee onderdelen:
29
-
30
- - Een retriever. Die haalt adhv de vraag _k_ relevante stukken context op, bv.
31
- met `tf-idf`.
32
- - Een model dat het antwoord genereert. Wat je hier precies gebruikt hangt af
33
- van de manier van question answering:
34
- - Voor **extractive QA** gebruik je een reader;
35
- - Voor **generative QA** gebruik je een generator.
36
-
37
- Beide werken op basis van een language model.
38
-
39
- ## Handige info
40
-
41
- - Huggingface QA tutorial: <https://huggingface.co/docs/transformers/tasks/question_answering#finetune-with-tensorflow>
42
- - Overview van open-domain question answering technieken: <https://lilianweng.github.io/posts/2020-10-29-odqa/>
43
-
44
- ## Base model
45
-
46
- Tot nu toe alleen een retriever die adhv een vraag de top-k relevante documents
47
- ophaalt. Haalt voor veel vragen wel hoge similarity scores, maar de documents
48
- die die ophaalt zijn meestal niet erg relevant.
49
-
50
- ```bash
51
- poetry shell
52
- cd base_model
53
- poetry run python main.py
54
- ```
55
-
56
- ### Voorbeeld
57
-
58
- "What is the perplexity of a language model?"
59
-
60
- > Result 1 (score: 74.10):
61
- > Figure 10 .17 A sample alignment between sentences in English and French, with
62
- > sentences extracted from Antoine de Saint-Exupery's Le Petit Prince and a
63
- > hypothetical translation. Sentence alignment takes sentences e 1 , ..., e n ,
64
- > and f 1 , ..., f n and finds minimal > sets of sentences that are translations
65
- > of each other, including single sentence mappings like (e 1 ,f 1 ), (e 4 -f 3
66
- > ), (e 5 -f 4 ), (e 6 -f 6 ) as well as 2-1 alignments (e 2 /e 3 ,f 2 ), (e 7
67
- > /e 8 -f 7 ), and null alignments (f 5 ).
68
- >
69
- > Result 2 (score: 74.23):
70
- > Character or word overlap-based metrics like chrF (or BLEU, or etc.) are
71
- > mainly used to compare two systems, with the goal of answering questions like:
72
- > did the new algorithm we just invented improve our MT system? To know if the
73
- > difference between the chrF scores of two > MT systems is a significant
74
- > difference, we use the paired bootstrap test, or the similar randomization
75
- > test.
76
- >
77
- > Result 3 (score: 74.43):
78
- > The model thus predicts the class negative for the test sentence.
79
- >
80
- > Result 4 (score: 74.95):
81
- > Translating from languages with extensive pro-drop, like Chinese or Japanese,
82
- > to non-pro-drop languages like English can be difficult since the model must
83
- > somehow identify each zero and recover who or what is being talked about in
84
- > order to insert the proper pronoun.
85
- >
86
- > Result 5 (score: 76.22):
87
- > Similarly, a recent challenge set, the WinoMT dataset (Stanovsky et al., 2019)
88
- > shows that MT systems perform worse when they are asked to translate sentences
89
- > that describe people with non-stereotypical gender roles, like "The doctor
90
- > asked the nurse to help her in the > operation".
91
-
92
-
93
- ## Setting up elastic search.