Commit
·
790404c
1
Parent(s):
cb70096
remove old readme and cleanup old readme
Browse files- README.md +7 -1
- README.old.md +0 -93
README.md
CHANGED
@@ -17,6 +17,8 @@ pinned: true
|
|
17 |
|
18 |
View the demo at huggingface spaces:
|
19 |
|
|
|
|
|
20 |
|
21 |
## Dependencies
|
22 |
|
@@ -46,6 +48,11 @@ Next, run the following command **from the root of the repository**:
|
|
46 |
docker cp es01:/usr/share/elasticsearch/config/certs/http_ca.crt .
|
47 |
```
|
48 |
|
|
|
|
|
|
|
|
|
|
|
49 |
## Running
|
50 |
|
51 |
To make sure we're using the dependencies managed by Poetry, run `poetry shell`
|
@@ -101,5 +108,4 @@ options:
|
|
101 |
```
|
102 |
|
103 |
|
104 |
-
|
105 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
|
|
17 |
|
18 |
View the demo at huggingface spaces:
|
19 |
|
20 |
+
[DEMO](https://huggingface.co/spaces/RugNlpFlashcards/Speech_Language_Processing_Jurafsky_Martin)
|
21 |
+
|
22 |
|
23 |
## Dependencies
|
24 |
|
|
|
48 |
docker cp es01:/usr/share/elasticsearch/config/certs/http_ca.crt .
|
49 |
```
|
50 |
|
51 |
+
|
52 |
+
Alternatively, if docker is not available or feasable. It is possible to use a trail hosted version of Elasticsearch at:
|
53 |
+
|
54 |
+
https://www.elastic.co/cloud/
|
55 |
+
|
56 |
## Running
|
57 |
|
58 |
To make sure we're using the dependencies managed by Poetry, run `poetry shell`
|
|
|
108 |
```
|
109 |
|
110 |
|
|
|
111 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
README.old.md
DELETED
@@ -1,93 +0,0 @@
|
|
1 |
-
# nlp-flashcard-project
|
2 |
-
|
3 |
-
## Todo 2
|
4 |
-
|
5 |
-
- [ ] Contexts preprocessing
|
6 |
-
- [ ] Formules enzo eruit filteren
|
7 |
-
- [ ] Splitsen op zinnen...?
|
8 |
-
- [ ] Meer language models proberen
|
9 |
-
- [X] Elasticsearch
|
10 |
-
- [X] CLI voor vragen beantwoorden
|
11 |
-
|
12 |
-
### Extra dingen
|
13 |
-
|
14 |
-
- [X] Huggingface spaces demo
|
15 |
-
- [ ] Question generation voor finetuning
|
16 |
-
- [ ] Language model finetunen
|
17 |
-
|
18 |
-
## Todo voor progress meeting
|
19 |
-
|
20 |
-
- [ ] Data inlezen/Repo klaarmaken
|
21 |
-
- [ ] Proof of concept met UnifiedQA
|
22 |
-
- [ ] Standaard QA model met de dataset
|
23 |
-
- [ ] Papers verzamelen/lezen
|
24 |
-
- [ ] Eerder werk bekijken, inspiratie opdoen voor research richting
|
25 |
-
|
26 |
-
## Overview
|
27 |
-
|
28 |
-
De meeste QA systemen bestaan uit twee onderdelen:
|
29 |
-
|
30 |
-
- Een retriever. Die haalt adhv de vraag _k_ relevante stukken context op, bv.
|
31 |
-
met `tf-idf`.
|
32 |
-
- Een model dat het antwoord genereert. Wat je hier precies gebruikt hangt af
|
33 |
-
van de manier van question answering:
|
34 |
-
- Voor **extractive QA** gebruik je een reader;
|
35 |
-
- Voor **generative QA** gebruik je een generator.
|
36 |
-
|
37 |
-
Beide werken op basis van een language model.
|
38 |
-
|
39 |
-
## Handige info
|
40 |
-
|
41 |
-
- Huggingface QA tutorial: <https://huggingface.co/docs/transformers/tasks/question_answering#finetune-with-tensorflow>
|
42 |
-
- Overview van open-domain question answering technieken: <https://lilianweng.github.io/posts/2020-10-29-odqa/>
|
43 |
-
|
44 |
-
## Base model
|
45 |
-
|
46 |
-
Tot nu toe alleen een retriever die adhv een vraag de top-k relevante documents
|
47 |
-
ophaalt. Haalt voor veel vragen wel hoge similarity scores, maar de documents
|
48 |
-
die die ophaalt zijn meestal niet erg relevant.
|
49 |
-
|
50 |
-
```bash
|
51 |
-
poetry shell
|
52 |
-
cd base_model
|
53 |
-
poetry run python main.py
|
54 |
-
```
|
55 |
-
|
56 |
-
### Voorbeeld
|
57 |
-
|
58 |
-
"What is the perplexity of a language model?"
|
59 |
-
|
60 |
-
> Result 1 (score: 74.10):
|
61 |
-
> Figure 10 .17 A sample alignment between sentences in English and French, with
|
62 |
-
> sentences extracted from Antoine de Saint-Exupery's Le Petit Prince and a
|
63 |
-
> hypothetical translation. Sentence alignment takes sentences e 1 , ..., e n ,
|
64 |
-
> and f 1 , ..., f n and finds minimal > sets of sentences that are translations
|
65 |
-
> of each other, including single sentence mappings like (e 1 ,f 1 ), (e 4 -f 3
|
66 |
-
> ), (e 5 -f 4 ), (e 6 -f 6 ) as well as 2-1 alignments (e 2 /e 3 ,f 2 ), (e 7
|
67 |
-
> /e 8 -f 7 ), and null alignments (f 5 ).
|
68 |
-
>
|
69 |
-
> Result 2 (score: 74.23):
|
70 |
-
> Character or word overlap-based metrics like chrF (or BLEU, or etc.) are
|
71 |
-
> mainly used to compare two systems, with the goal of answering questions like:
|
72 |
-
> did the new algorithm we just invented improve our MT system? To know if the
|
73 |
-
> difference between the chrF scores of two > MT systems is a significant
|
74 |
-
> difference, we use the paired bootstrap test, or the similar randomization
|
75 |
-
> test.
|
76 |
-
>
|
77 |
-
> Result 3 (score: 74.43):
|
78 |
-
> The model thus predicts the class negative for the test sentence.
|
79 |
-
>
|
80 |
-
> Result 4 (score: 74.95):
|
81 |
-
> Translating from languages with extensive pro-drop, like Chinese or Japanese,
|
82 |
-
> to non-pro-drop languages like English can be difficult since the model must
|
83 |
-
> somehow identify each zero and recover who or what is being talked about in
|
84 |
-
> order to insert the proper pronoun.
|
85 |
-
>
|
86 |
-
> Result 5 (score: 76.22):
|
87 |
-
> Similarly, a recent challenge set, the WinoMT dataset (Stanovsky et al., 2019)
|
88 |
-
> shows that MT systems perform worse when they are asked to translate sentences
|
89 |
-
> that describe people with non-stereotypical gender roles, like "The doctor
|
90 |
-
> asked the nurse to help her in the > operation".
|
91 |
-
|
92 |
-
|
93 |
-
## Setting up elastic search.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|