Spaces:
Sleeping
Sleeping
Create predict_page.py
Browse files- predict_page.py +59 -0
predict_page.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import joblib
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
def load_model():
|
| 6 |
+
with open('saved_steps.pkl', 'rb') as file:
|
| 7 |
+
data = joblib.load(file)
|
| 8 |
+
return data
|
| 9 |
+
|
| 10 |
+
data = load_model()
|
| 11 |
+
|
| 12 |
+
regressor = data["model"]
|
| 13 |
+
le_country = data["le_country"]
|
| 14 |
+
le_education = data["le_education"]
|
| 15 |
+
|
| 16 |
+
def show_predict_page():
|
| 17 |
+
st.title("Software Developer Salary Prediction")
|
| 18 |
+
|
| 19 |
+
st.write("""### We need some information to predict the salary""")
|
| 20 |
+
|
| 21 |
+
countries = (
|
| 22 |
+
"United States of America",
|
| 23 |
+
"Germany",
|
| 24 |
+
"United Kingdom of Great Britain and Northern Ireland",
|
| 25 |
+
"India",
|
| 26 |
+
"Canada",
|
| 27 |
+
"France",
|
| 28 |
+
"Brazil",
|
| 29 |
+
"Spain",
|
| 30 |
+
"Netherlands",
|
| 31 |
+
"Australia",
|
| 32 |
+
"Italy",
|
| 33 |
+
"Poland",
|
| 34 |
+
"Sweden",
|
| 35 |
+
"Russian Federation",
|
| 36 |
+
"Switzerland",
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
education = (
|
| 40 |
+
"Less than a Bachelors",
|
| 41 |
+
"Bachelor’s degree",
|
| 42 |
+
"Master’s degree",
|
| 43 |
+
"Post grad",
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
country = st.selectbox("Country", countries)
|
| 47 |
+
education = st.selectbox("Education Level", education)
|
| 48 |
+
|
| 49 |
+
experience = st.slider("Years of Experience", 0, 50, 3)
|
| 50 |
+
|
| 51 |
+
ok = st.button("Calculate Salary")
|
| 52 |
+
if ok:
|
| 53 |
+
X = np.array([[country, education, experience ]])
|
| 54 |
+
X[:, 0] = le_country.transform(X[:,0])
|
| 55 |
+
X[:, 1] = le_education.transform(X[:,1])
|
| 56 |
+
X = X.astype(float)
|
| 57 |
+
|
| 58 |
+
salary = regressor.predict(X)
|
| 59 |
+
st.subheader(f"The estimated salary is ${salary[0]:.2f}")
|