import streamlit as st from transformers import pipeline import torch import matplotlib.pyplot as plt #pipe = pipeline(model="RuudVelo/dutch_news_classifier_bert_finetuned") #text = st.text_area('Please type/copy/paste the Dutch article') #labels = ['Binnenland' 'Buitenland' 'Cultuur & Media' 'Economie' 'Koningshuis' # 'Opmerkelijk' 'Politiek' 'Regionaal nieuws' 'Tech'] #if text: # out = pipe(text) # st.json(out) # load tokenizer and model, create trainer #model_name = "RuudVelo/dutch_news_classifier_bert_finetuned" #tokenizer = AutoTokenizer.from_pretrained(model_name) #model = AutoModelForSequenceClassification.from_pretrained(model_name) #trainer = Trainer(model=model) #print(filename, type(filename)) #print(filename.name) from transformers import BertForSequenceClassification, BertTokenizer model = BertForSequenceClassification.from_pretrained("RuudVelo/dutch_news_clf_bert_finetuned") #from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained("RuudVelo/dutch_news_clf_bert_finetuned") # Title st.title("Dutch news article classification") text = st.text_area('Please type/copy/paste text of the Dutch article') #if text: # encoding = tokenizer(text, return_tensors="pt") # outputs = model(**encoding) # predictions = outputs.logits.argmax(-1) # probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) ## fig = plt.figure() # ax = fig.add_axes([0,0,1,1]) # labels_plot = ['Binnenland', 'Buitenland' ,'Cultuur & Media' ,'Economie' ,'Koningshuis', # 'Opmerkelijk' ,'Politiek', 'Regionaal nieuws', 'Tech'] # probs_plot = probabilities[0].cpu().detach().numpy() # ax.barh(labels_plot,probs_plot ) # st.pyplot(fig) #input = st.text_input('Context') if st.button('Submit'): with st.spinner('Generating a response...'): encoding = tokenizer(text, return_tensors="pt") outputs = model(**encoding) predictions = outputs.logits.argmax(-1) probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) fig = plt.figure() ax = fig.add_axes([0,0,1,1]) labels_plot = ['Binnenland', 'Buitenland' ,'Cultuur & Media' ,'Economie' ,'Koningshuis', 'Opmerkelijk' ,'Politiek', 'Regionaal nieuws', 'Tech'] probs_plot = probabilities[0].cpu().detach().numpy() ax.barh(labels_plot,probs_plot) ax.set_title("Predicted article category probability") ax.set_xlabel("Probability") ax.set_ylabel("Predicted category") st.pyplot(fig) # output = genQuestion(option, input) # print(output) # st.write(output) #encoding = tokenizer(text, return_tensors="pt") #import numpy as np st.write("The model for this app has been trained using data from Dutch news articles published by NOS. For more information regarding the dataset can be found at https://www.kaggle.com/maxscheijen/dutch-news-articles") st.write('\n') st.write('The model performance details can be found at https://huggingface.co/RuudVelo/dutch_news_classifier_bert_finetuned')