File size: 32,402 Bytes
e395ec4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
import inspect
import warnings
from typing import Callable, List, Optional, Union, Dict, Any
import PIL
import torch
from packaging import version
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, CLIPFeatureExtractor, CLIPTokenizer, CLIPTextModel
from diffusers.utils.import_utils import is_accelerate_available
from diffusers.configuration_utils import FrozenDict
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.embeddings import get_timestep_embedding
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import deprecate, logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
import os
import torchvision.transforms.functional as TF
from einops import rearrange
logger = logging.get_logger(__name__)

class StableUnCLIPImg2ImgPipeline(DiffusionPipeline):
    """

    Pipeline for text-guided image to image generation using stable unCLIP.



    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the

    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)



    Args:

        feature_extractor ([`CLIPFeatureExtractor`]):

            Feature extractor for image pre-processing before being encoded.

        image_encoder ([`CLIPVisionModelWithProjection`]):

            CLIP vision model for encoding images.

        image_normalizer ([`StableUnCLIPImageNormalizer`]):

            Used to normalize the predicted image embeddings before the noise is applied and un-normalize the image

            embeddings after the noise has been applied.

        image_noising_scheduler ([`KarrasDiffusionSchedulers`]):

            Noise schedule for adding noise to the predicted image embeddings. The amount of noise to add is determined

            by `noise_level` in `StableUnCLIPPipeline.__call__`.

        tokenizer (`CLIPTokenizer`):

            Tokenizer of class

            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).

        text_encoder ([`CLIPTextModel`]):

            Frozen text-encoder.

        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.

        scheduler ([`KarrasDiffusionSchedulers`]):

            A scheduler to be used in combination with `unet` to denoise the encoded image latents.

        vae ([`AutoencoderKL`]):

            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.

    """
    # image encoding components
    feature_extractor: CLIPFeatureExtractor
    image_encoder: CLIPVisionModelWithProjection
    # image noising components
    image_normalizer: StableUnCLIPImageNormalizer
    image_noising_scheduler: KarrasDiffusionSchedulers
    # regular denoising components
    tokenizer: CLIPTokenizer
    text_encoder: CLIPTextModel
    unet: UNet2DConditionModel
    scheduler: KarrasDiffusionSchedulers
    vae: AutoencoderKL

    def __init__(

        self,

        # image encoding components

        feature_extractor: CLIPFeatureExtractor,

        image_encoder: CLIPVisionModelWithProjection,

        # image noising components

        image_normalizer: StableUnCLIPImageNormalizer,

        image_noising_scheduler: KarrasDiffusionSchedulers,

        # regular denoising components

        tokenizer: CLIPTokenizer,

        text_encoder: CLIPTextModel,

        unet: UNet2DConditionModel,

        scheduler: KarrasDiffusionSchedulers,

        # vae

        vae: AutoencoderKL,

        num_views: int = 4,

    ):
        super().__init__()

        self.register_modules(
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
            image_normalizer=image_normalizer,
            image_noising_scheduler=image_noising_scheduler,
            tokenizer=tokenizer,
            text_encoder=text_encoder,
            unet=unet,
            scheduler=scheduler,
            vae=vae,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.num_views: int = num_views
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
    def enable_vae_slicing(self):
        r"""

        Enable sliced VAE decoding.



        When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several

        steps. This is useful to save some memory and allow larger batch sizes.

        """
        self.vae.enable_slicing()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
    def disable_vae_slicing(self):
        r"""

        Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to

        computing decoding in one step.

        """
        self.vae.disable_slicing()

    def enable_sequential_cpu_offload(self, gpu_id=0):
        r"""

        Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's

        models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only

        when their specific submodule has its `forward` method called.

        """
        if is_accelerate_available():
            from accelerate import cpu_offload
        else:
            raise ImportError("Please install accelerate via `pip install accelerate`")

        device = torch.device(f"cuda:{gpu_id}")

        # TODO: self.image_normalizer.{scale,unscale} are not covered by the offload hooks, so they fails if added to the list
        models = [
            self.image_encoder,
            self.text_encoder,
            self.unet,
            self.vae,
        ]
        for cpu_offloaded_model in models:
            if cpu_offloaded_model is not None:
                cpu_offload(cpu_offloaded_model, device)

    @property
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
    def _execution_device(self):
        r"""

        Returns the device on which the pipeline's models will be executed. After calling

        `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module

        hooks.

        """
        if not hasattr(self.unet, "_hf_hook"):
            return self.device
        for module in self.unet.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)
        return self.device

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
    def _encode_prompt(

        self,

        prompt,

        device,

        num_images_per_prompt,

        do_classifier_free_guidance,

        negative_prompt=None,

        prompt_embeds: Optional[torch.FloatTensor] = None,

        negative_prompt_embeds: Optional[torch.FloatTensor] = None,

        lora_scale: Optional[float] = None,

    ):
        r"""

        Encodes the prompt into text encoder hidden states.



        Args:

             prompt (`str` or `List[str]`, *optional*):

                prompt to be encoded

            device: (`torch.device`):

                torch device

            num_images_per_prompt (`int`):

                number of images that should be generated per prompt

            do_classifier_free_guidance (`bool`):

                whether to use classifier free guidance or not

            negative_prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts not to guide the image generation. If not defined, one has to pass

                `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.

                Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).

            prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not

                provided, text embeddings will be generated from `prompt` input argument.

            negative_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt

                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input

                argument.

        """
        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

        if do_classifier_free_guidance:
            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            normal_prompt_embeds, color_prompt_embeds = torch.chunk(prompt_embeds, 2, dim=0)
            
            prompt_embeds = torch.cat([normal_prompt_embeds, normal_prompt_embeds, color_prompt_embeds, color_prompt_embeds], 0)

        return prompt_embeds

    def _encode_image(

        self,

        image_pil,

        device,

        num_images_per_prompt,

        do_classifier_free_guidance,

        noise_level: int=0,

        generator: Optional[torch.Generator] = None

    ):
        dtype = next(self.image_encoder.parameters()).dtype
        # ______________________________clip image embedding______________________________ 
        image = self.feature_extractor(images=image_pil, return_tensors="pt").pixel_values
        image = image.to(device=device, dtype=dtype)
        image_embeds = self.image_encoder(image).image_embeds
        
        image_embeds = self.noise_image_embeddings(
            image_embeds=image_embeds,
            noise_level=noise_level,
            generator=generator,
            )
        # duplicate image embeddings for each generation per prompt, using mps friendly method
        # image_embeds = image_embeds.unsqueeze(1)
        # note: the condition input is same
        image_embeds = image_embeds.repeat(num_images_per_prompt, 1)

        if do_classifier_free_guidance:
            normal_image_embeds, color_image_embeds = torch.chunk(image_embeds, 2, dim=0)
            negative_prompt_embeds = torch.zeros_like(normal_image_embeds)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            image_embeds = torch.cat([negative_prompt_embeds, normal_image_embeds, negative_prompt_embeds, color_image_embeds], 0)
            
        # _____________________________vae input latents__________________________________________________
        image_pt = torch.stack([TF.to_tensor(img) for img in image_pil], dim=0).to(dtype=self.vae.dtype, device=device)
        image_pt = image_pt * 2.0 - 1.0
        image_latents = self.vae.encode(image_pt).latent_dist.mode() * self.vae.config.scaling_factor
        # Note: repeat differently from official pipelines     
        image_latents = image_latents.repeat(num_images_per_prompt, 1, 1, 1)

        if do_classifier_free_guidance:
            normal_image_latents, color_image_latents = torch.chunk(image_latents, 2, dim=0)
            image_latents = torch.cat([torch.zeros_like(normal_image_latents), normal_image_latents, 
                                       torch.zeros_like(color_image_latents), color_image_latents], 0)

        return image_embeds, image_latents

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
    def decode_latents(self, latents):
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(

        self,

        prompt,

        image,

        height,

        width,

        callback_steps,

        noise_level,

    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")


        if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps:
            raise ValueError(
                f"`noise_level` must be between 0 and {self.image_noising_scheduler.config.num_train_timesteps - 1}, inclusive."
            )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_unclip.StableUnCLIPPipeline.noise_image_embeddings
    def noise_image_embeddings(

        self,

        image_embeds: torch.Tensor,

        noise_level: int,

        noise: Optional[torch.FloatTensor] = None,

        generator: Optional[torch.Generator] = None,

    ):
        """

        Add noise to the image embeddings. The amount of noise is controlled by a `noise_level` input. A higher

        `noise_level` increases the variance in the final un-noised images.



        The noise is applied in two ways

        1. A noise schedule is applied directly to the embeddings

        2. A vector of sinusoidal time embeddings are appended to the output.



        In both cases, the amount of noise is controlled by the same `noise_level`.



        The embeddings are normalized before the noise is applied and un-normalized after the noise is applied.

        """
        if noise is None:
            noise = randn_tensor(
                image_embeds.shape, generator=generator, device=image_embeds.device, dtype=image_embeds.dtype
            )

        noise_level = torch.tensor([noise_level] * image_embeds.shape[0], device=image_embeds.device)

        image_embeds = self.image_normalizer.scale(image_embeds)

        image_embeds = self.image_noising_scheduler.add_noise(image_embeds, timesteps=noise_level, noise=noise)

        image_embeds = self.image_normalizer.unscale(image_embeds)

        noise_level = get_timestep_embedding(
            timesteps=noise_level, embedding_dim=image_embeds.shape[-1], flip_sin_to_cos=True, downscale_freq_shift=0
        )

        # `get_timestep_embeddings` does not contain any weights and will always return f32 tensors,
        # but we might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        noise_level = noise_level.to(image_embeds.dtype)

        image_embeds = torch.cat((image_embeds, noise_level), 1)

        return image_embeds

    @torch.no_grad()
    # @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(

        self,

        image: Union[torch.FloatTensor, PIL.Image.Image],

        prompt: Union[str, List[str]],   

        prompt_embeds: torch.FloatTensor = None,

        dino_feature: torch.FloatTensor = None,

        height: Optional[int] = None,

        width: Optional[int] = None,

        num_inference_steps: int = 20,

        guidance_scale: float = 10,

        negative_prompt: Optional[Union[str, List[str]]] = None,

        num_images_per_prompt: Optional[int] = 1,

        eta: float = 0.0,

        generator: Optional[torch.Generator] = None,

        latents: Optional[torch.FloatTensor] = None,

        negative_prompt_embeds: Optional[torch.FloatTensor] = None,

        output_type: Optional[str] = "pil",

        return_dict: bool = True,

        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,

        callback_steps: int = 1,

        cross_attention_kwargs: Optional[Dict[str, Any]] = None,

        noise_level: int = 0,

        image_embeds: Optional[torch.FloatTensor] = None,

        return_elevation_focal: Optional[bool] = False,

        gt_img_in: Optional[torch.FloatTensor] = None,

    ):
        r"""

        Function invoked when calling the pipeline for generation.



        Args:

            prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.

                instead.

            image (`torch.FloatTensor` or `PIL.Image.Image`):

                `Image`, or tensor representing an image batch. The image will be encoded to its CLIP embedding which

                the unet will be conditioned on. Note that the image is _not_ encoded by the vae and then used as the

                latents in the denoising process such as in the standard stable diffusion text guided image variation

                process.

            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):

                The height in pixels of the generated image.

            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):

                The width in pixels of the generated image.

            num_inference_steps (`int`, *optional*, defaults to 20):

                The number of denoising steps. More denoising steps usually lead to a higher quality image at the

                expense of slower inference.

            guidance_scale (`float`, *optional*, defaults to 10.0):

                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).

                `guidance_scale` is defined as `w` of equation 2. of [Imagen

                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >

                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,

                usually at the expense of lower image quality.

            negative_prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts not to guide the image generation. If not defined, one has to pass

                `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.

                Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).

            num_images_per_prompt (`int`, *optional*, defaults to 1):

                The number of images to generate per prompt.

            eta (`float`, *optional*, defaults to 0.0):

                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to

                [`schedulers.DDIMScheduler`], will be ignored for others.

            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):

                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)

                to make generation deterministic.

            latents (`torch.FloatTensor`, *optional*):

                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image

                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents

                tensor will ge generated by sampling using the supplied random `generator`.

            prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not

                provided, text embeddings will be generated from `prompt` input argument.

            negative_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt

                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input

                argument.

            output_type (`str`, *optional*, defaults to `"pil"`):

                The output format of the generate image. Choose between

                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a

                plain tuple.

            callback (`Callable`, *optional*):

                A function that will be called every `callback_steps` steps during inference. The function will be

                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.

            callback_steps (`int`, *optional*, defaults to 1):

                The frequency at which the `callback` function will be called. If not specified, the callback will be

                called at every step.

            cross_attention_kwargs (`dict`, *optional*):

                A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under

                `self.processor` in

                [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).

            noise_level (`int`, *optional*, defaults to `0`):

                The amount of noise to add to the image embeddings. A higher `noise_level` increases the variance in

                the final un-noised images. See `StableUnCLIPPipeline.noise_image_embeddings` for details.

            image_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated CLIP embeddings to condition the unet on. Note that these are not latents to be used in

                the denoising process. If you want to provide pre-generated latents, pass them to `__call__` as

                `latents`.



        Examples:



        Returns:

            [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~ pipeline_utils.ImagePipelineOutput`] if `return_dict` is

            True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images.

        """
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt=prompt,
            image=image,
            height=height,
            width=width,
            callback_steps=callback_steps,
            noise_level=noise_level
        )

        # 2. Define call parameters
        if isinstance(image, list):
            batch_size = len(image)
        elif isinstance(image, torch.Tensor):
            batch_size = image.shape[0]
            assert batch_size >= self.num_views and batch_size % self.num_views == 0
        elif isinstance(image, PIL.Image.Image):
            image = [image]*self.num_views*2
            batch_size = self.num_views*2

        if isinstance(prompt, str):
            prompt = [prompt] * self.num_views * 2

        device = self._execution_device

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale != 1.0

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )
        prompt_embeds = self._encode_prompt(
            prompt=prompt,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
        )
        

        # 4. Encoder input image
        if isinstance(image, list):
            image_pil = image
        elif isinstance(image, torch.Tensor):
            image_pil = [TF.to_pil_image(image[i]) for i in range(image.shape[0])]
        noise_level = torch.tensor([noise_level], device=device)
        image_embeds, image_latents = self._encode_image(
            image_pil=image_pil,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            noise_level=noise_level,
            generator=generator,
        )

        # 5. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 6. Prepare latent variables
        num_channels_latents = self.unet.config.out_channels
        if gt_img_in is not None:
            latents = gt_img_in * self.scheduler.init_noise_sigma
        else:
            latents = self.prepare_latents(
                batch_size=batch_size,
                num_channels_latents=num_channels_latents,
                height=height,
                width=width,
                dtype=prompt_embeds.dtype,
                device=device,
                generator=generator,
                latents=latents,
            )

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        eles, focals = [], []
        # 8. Denoising loop
        for i, t in enumerate(self.progress_bar(timesteps)):
            if do_classifier_free_guidance:
                normal_latents, color_latents = torch.chunk(latents, 2, dim=0)  
                latent_model_input = torch.cat([normal_latents, normal_latents, color_latents, color_latents], 0)
            else:
                latent_model_input = latents
            latent_model_input = torch.cat([
                    latent_model_input, image_latents
                ], dim=1)
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            # predict the noise residual
            unet_out = self.unet(
                latent_model_input,
                t,
                encoder_hidden_states=prompt_embeds,
                dino_feature=dino_feature,
                class_labels=image_embeds,
                cross_attention_kwargs=cross_attention_kwargs,
                return_dict=False)
            
            noise_pred = unet_out[0]
            if return_elevation_focal:    
                uncond_pose, pose  = torch.chunk(unet_out[1], 2, 0) 
                pose = uncond_pose + guidance_scale * (pose - uncond_pose)
                ele = pose[:, 0].detach().cpu().numpy() # b
                eles.append(ele)
                focal = pose[:, 1].detach().cpu().numpy()
                focals.append(focal)
                
            # perform guidance
            if do_classifier_free_guidance:
                normal_noise_pred_uncond, normal_noise_pred_text, color_noise_pred_uncond, color_noise_pred_text = torch.chunk(noise_pred, 4, dim=0)
                
                noise_pred_uncond, noise_pred_text = torch.cat([normal_noise_pred_uncond, color_noise_pred_uncond], 0), torch.cat([normal_noise_pred_text, color_noise_pred_text], 0)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

            if callback is not None and i % callback_steps == 0:
                callback(i, t, latents)

        # 9. Post-processing
        if not output_type == "latent":
            if num_channels_latents == 8:
                latents = torch.cat([latents[:, :4], latents[:, 4:]], dim=0)
            with torch.no_grad():
                image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        else:
            image = latents

        image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload last model to CPU
        # if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
        #     self.final_offload_hook.offload()
        if not return_dict:
            return (image, )
        if return_elevation_focal:
            return ImagePipelineOutput(images=image),  eles, focals
        else:
            return ImagePipelineOutput(images=image)