Spaces:
Runtime error
Runtime error
File size: 1,415 Bytes
5a4923b 58d5d8a 0e9f7cd 1bf5d39 e8c2dc9 8560266 e8c2dc9 8560266 e8c2dc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
def app():
st.title('Toxic Comment Detector')
st.write('Модель: ruBert tiny toxicity.')
st.image('https://media4.giphy.com/media/CdhxVrdRN4YFi/giphy.gif')
model_checkpoint = 'cointegrated/rubert-tiny-toxicity'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
if torch.cuda.is_available():
model.cuda()
def text2toxicity(text, aggregate=True):
""" Calculate toxicity of a text (if aggregate=True) or a vector of toxicity aspects (if aggregate=False)"""
with torch.no_grad():
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(model.device)
proba = torch.sigmoid(model(**inputs).logits).cpu().numpy()
if isinstance(text, str):
proba = proba[0]
if aggregate:
return 1 - proba.T[0] * (1 - proba.T[-1])
return proba
user_input = st.text_area("Enter your text:", "Собака сутулая")
if st.button("Analyze"):
toxicity_score = text2toxicity(user_input, True)
st.write(f"Toxicity Score: {toxicity_score:.4f}")
if toxicity_score > 0.5:
st.write("Warning: The text seems to be toxic!")
|