import streamlit as st import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification def app(): st.title('Toxic Comment Detector') st.write('Модель: ruBert tiny toxicity.') st.image('https://media4.giphy.com/media/CdhxVrdRN4YFi/giphy.gif') model_checkpoint = 'cointegrated/rubert-tiny-toxicity' tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint) if torch.cuda.is_available(): model.cuda() def text2toxicity(text, aggregate=True): """ Calculate toxicity of a text (if aggregate=True) or a vector of toxicity aspects (if aggregate=False)""" with torch.no_grad(): inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(model.device) proba = torch.sigmoid(model(**inputs).logits).cpu().numpy() if isinstance(text, str): proba = proba[0] if aggregate: return 1 - proba.T[0] * (1 - proba.T[-1]) return proba user_input = st.text_area("Enter your text:", "Собака сутулая") if st.button("Analyze"): toxicity_score = text2toxicity(user_input, True) st.write(f"Toxicity Score: {toxicity_score:.4f}") if toxicity_score > 0.5: st.write("Warning: The text seems to be toxic!")