import gradio as gr from infer_onnx import TTS from ruaccent import RUAccent # https://huggingface.co/TeraTTS/accentuator # Заголовок и ссылка на репозиторий с моделями title = "GitHub with models: https://github.com/Tera2Space/RUTTS" # Список моделей TTS для выбора models = ["TeraTTS/natasha-g2p-vits", "TeraTTS/glados2-g2p-vits"] # Создаем словарь моделей и инициализируем их models = {k: TTS(k) for k in models} # Создаем объект для акцентуации текста accentizer = RUAccent(workdir="./model/ruaccent") accentizer.load(omograph_model_size='medium', dict_load_startup=True) # Функция для предобработки текста (акцентуация и ё) def process_text(text: str) -> str: text = accentizer.process_all(text) return text # Функция для синтеза речи def text_to_speech(model_name, length_scale, text, prep_text): if prep_text: text = process_text(text) audio = models[model_name](text, length_scale=length_scale) models[model_name].save_wav(audio, 'temp.wav') return 'temp.wav', f"Обработанный текст: '{text}'" # Создание интерфейса Gradio model_choice = gr.Dropdown(choices=list(models.keys()), value="TeraTTS/natasha-g2p-vits", label="Выберите модель") input_text = gr.Textbox(label="Введите текст для синтеза речи") prep_text = gr.Checkbox(label="Предобработать", info="Хотите предобработать текст? (ударения, ё)", value=True) length_scale = gr.Slider(minimum=0.1, maximum=2.0, label="Length scale (увеличить длину звучания) По умолчанию: 1.2", value=1.2) output_audio = gr.Audio(label="Аудио", type="numpy") output_text = gr.Textbox(label="Обработанный текст") iface = gr.Interface(fn=text_to_speech, inputs=[model_choice, length_scale, input_text, prep_text], outputs=[output_audio, output_text], title=title) iface.launch()